

Linux Basics for SysAdmin

Learn core linux concepts and command-line skills to kickstart your

system administration career

Ryan Juan

Preface

For students, aspiring IT specialists, and working professionals, "Linux
Basics for SysAdmin" is a great starting point for learning the
fundamentals of Linux, including the command line and all the tools and
commands needed to manage enterprise systems.

At first, you are introduced to the Linux environment, with a focus on
browsing the filesystem, using basic commands, managing files and
directories, and becoming acquainted with the shell. You'll also learn
about package management and how to handle system startup and
shutdown efficiently.

After that, you'll learn all about system configuration files, 'systemd' for
managing system services, crontab for job scheduling, and 'at' and
'batch' for automating processes. You will also learn about system
performance monitoring, log files, backup and restore procedures, disk
partitioning, and remote management via SSH.

Afterwards, the book delves into topics such as dependency management,
system hardware configuration, kernel upgrades, and device driver
management, as well as package management with 'apt' and 'yum'. You'll
also learn how to create and manage repositories, and install and setup
virtual machines with VirtualBox. In the end, the book covers a wide
range of topics, including creating and managing user accounts, editing
user profiles, setting ownership and permissions for files, using ACLs,
managing user sessions, configuring sudo for administrative tasks,
implementing password policies, working with PAM, and managing group
memberships.

In this book you will learn how to:

Master essential Linux commands to efficiently navigate and manage the
system's file structure.
Gain proficiency in user and group management to ensure secure access
control and permissions.
Learn to configure and manage system services with systemd for
streamlined service administration.
Implement and enforce robust password policies for enhanced security
and user account protection.
Understand and utilize package management tools for seamless software
installation.
Set up and manage virtual machines with VirtualBox to create isolated,
reproducible development environments.
Use Access Control Lists (ACLs) to fine-tune file permissions beyond the
standard Unix model.
Schedule and automate tasks using cron, at, and batch to improve system
efficiency and reliability.
Monitor system performance and logs to proactively identify and address
potential issues.
Securely configure and use SSH for remote management and
administration of Linux systems.

An understanding of the basics of Linux system administration will be
yours by the time you finish this book.

Also, there is a companion book called "Linux Advanced for SysAdmin"
for anyone who want to learn more advanced Linux techniques, by the
same Author ‘Ryan Juan’. Concepts like advanced database management,
security configuration, network management, system monitoring, and
advanced operations including deployments, load balancing, and working
with Kubernetes are the main focus of this follow-up book. Each of these
books, taken together, provide a solid foundation and advanced expertise
for both aspiring and practicing Linux system administrators.

Prologue

You have arrived at "Linux Basics for SysAdmin," a book that will teach
you the ropes of Linux so that you may confidently administer Linux
systems. Whether you're an experienced IT professional looking to hone
your skills, a student eager to learn Linux, or someone in between, this
book will cover all you need to know to become a competent system
administrator.

A large number of computers, desktops, and mobile devices throughout
the globe run Linux because of its flexibility and power. It is a priceless
asset to the IT sector due to its open-source nature, robustness, and
adaptability. Understanding the fundamental concepts that make Linux
systems secure, efficient, and dependable is more important than simply
knowing commands and configurations if you want to become an expert
Linux user.

Beginning with the fundamentals, this book will provide you with the
groundwork you need to become proficient with Linux. "Up and Running
with Linux Systems," the first chapter, provides an overview of the Linux
environment. A fundamental understanding of the shell, file and directory
management, and command syntax will be covered. We also go over the
basics of system starting and shutdown, managing packages, and the
utilities that are needed for Linux administration.

Next, in Chapter 2, "Managing Linux Systems," we will explore system
management in more detail. Discover the ins and outs of configuration
files, learn how to use systemd to control services, crontab to schedule
activities, and monitor system performance. Partitioning disks, managing

log files, and SSH-based remote administration are all covered in this
chapter.

When it comes to managing software and hardware, Chapter 3 is where
it's at. This chapter will teach you the ins and outs of using apt and yum
for package management, dealing with dependencies, configuring your
system's hardware, and upgrading the kernel. Docker and VirtualBox, two
popular tools for creating and managing virtual machines, are also covered
in this chapter.

Chapter 4, "User and Permission Management," discusses how to manage
users and permissions. Access Control Lists (ACLs), file ownership and
permission settings, user profile editing, and account creation and
management are all part of what you can expect. You will also be
responsible for managing group memberships, working with Pluggable
Authentication Modules (PAM), implementing password restrictions,
configuring sudo, and user sessions.

This book will provide you the core concepts of Linux system
administration practically, so you can start managing your systems with
confidence. Starting here will go you far in the IT career path you desire
by making you an expert Linux system administrator.

Copyright © 2024 by GitforGits

All rights reserved. This book is protected under copyright laws and no
part of it may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any
information storage and retrieval system, without the prior written
permission of the publisher. Any unauthorized reproduction, distribution,
or transmission of this work may result in civil and criminal penalties and
will be dealt with in the respective jurisdiction at anywhere in India, in
accordance with the applicable copyright laws.

Published by: GitforGits

Publisher: Sonal Dhandre

www.gitforgits.com

support@gitforgits.com

Printed in India

First Printing: May 2024

Cover Design by: Kitten Publishing

For permission to use material from this book, please contact GitforGits at
support@gitforgits.com.

Content

Preface

GitforGits

Acknowledgement

Chapter I: Up and Running with Linux Systems

Overview

Understanding Linux Ubuntu

Navigating the Linux Filesystem

Basic Linux Commands
Network Configuration and Troubleshooting
‘ip’ and ‘ifconfig’
‘mtr’
File and Text Processing
‘find’
‘awk’
Network Monitoring and Diagnostics
‘tcpdump’
‘netstat’
‘nslookup’
System and Process Management

‘sudo’
‘tmux’
‘lsns’
‘pkill’
Email and Web Requests
‘mail’
‘curl’
‘watch’
Sample Program: Putting All Commands Together

Network Configuration and Diagnostics
Searching and Processing Files
Capturing and Analyzing Network Traffic
DNS Queries and Network Statistics
System and Process Management
Email and Web Requests
Monitoring System Changes

File and Directory Management
Setting up the Directory Structure
Creating Files and Directories
Accessing Hidden Files and Directories
Viewing File and Directory Permissions
Changing File and Directory Permissions
Setting Ownership
Accessing Secured Files
Understanding Permissions and Access Control
Managing Large Files and Directories
Moving and Copying Files
Deleting Files and Directories
Finding Files Based on Permissions
Working with Links

Archiving and Compressing Files
File Integrity and Security
Scheduling Regular Tasks
Monitoring File and Directory Changes

Introduction to Shell
Purpose of Shell
Introducing Bash
Basic Bash Commands

Navigating Directories
Listing Directory Contents
Creating and Deleting Files
Copying and Moving Files
Using Command History
Tab Completion
Bash Variables
Bash Scripting
Conditional Statements
Loops in Bash
Functions in Bash

Basics of Package Management
Purpose of Managing Packages
Updating Package Lists and Upgrading Software
Installing Packages
Viewing Installed Packages
Deleting Packages
Finding Packages
Working with Repositories
Pinning Packages

Sample Program: Managing Packages for AlphaProject

System Startup and Shutdown
Shutting Down and Rebooting the System
Booting the System
Automating Startup and Shutdown
Managing Specific Services
Starting and Stopping Services
Enabling and Disabling Services at Boot
Checking Service Status

Sample Program: Managing AlphaProject Services
Scheduling Service Management with Cron
Logging and Monitoring Services

Managing Processes
Stages of a Process
Displaying Running Processes
Starting and Terminating Processes
Adjusting Process Priority
Suspending and Resuming Processes
Monitoring Process Activity
Sample Program: Managing Processes for AlphaProject
Starting a Web Server
Running a Background Script
Monitoring Web Server Activity
Terminating a Misbehaving Process
Changing the Priority of a Backup Process
Suspending and Resuming Long-Running Compilation
Automating Process Management with Cron
Monitoring Processes with ‘ps’ and ‘top’

Tracing a Problematic Process
Using ‘lsof’ to Check Open Files
Sample Workflow: Handling High CPU Usage
Identify the High CPU Process
Adjust the Priority
Monitor the Process
Terminate If Necessary

Accessing and using Linux Utilities
Role of Utilities
Common Utilities for AlphaProject

File and Directory Management Utilities
‘cp’, ‘mv’, and ‘rm’
‘find’
Text Processing Utilities
‘grep’
‘sed’
‘awk’
Network Utilities
‘ping’
‘traceroute’
‘netstat’
‘curl’
System Monitoring Utilities
‘top’ and ‘htop’
‘df’ and ‘du’
Archiving and Compression Utilities
‘tar’, ‘gzip’, and ‘zip’
Disk Usage and Partition Management Utilities
‘fdisk’ and ‘lsblk’
Sample Program: Using Utilities in AlphaProject

File Backup and Management
Log Analysis
Configuration Management
Network Diagnostics
System Monitoring
Disk Space Management
Archiving Project Data
Downloading Resources
Disk Partition Analysis

Summary

Chapter II: Managing Linux Systems

Overview

Getting around System Configuration Files
Characteristics of System Configuration Files
Categories of Configuration Files
Customizing Configuration Files
Editing Configuration Files
Backup Configuration Files
Understanding Configuration Syntax
Sample Program: Customizing Configuration Files
Customizing Network Settings
Configuring SSH
Setting up User Accounts
Configuring Apache Web Server
Managing Services
Configuring User and Group Permissions

Setting System Locale
Automating Configuration Changes

Managing System Services with ‘systemd’
‘systemd’ Components
Managing System Services with systemd
Viewing Service Status
Starting and Stopping Services
Restarting and Reloading Services
Enabling and Disabling Services at Boot
Checking All Services
Analyzing Boot Performance
Managing Dependencies

Creating Custom Service Units
Logging with journalctl
Handling Service Failures
Sample Program: Using ‘systemd’ to Manage AlphaProject Services

Using ‘crontab’
Introduction to Cron Utility
Understanding crontab
Sample Program: Using crontab in AlphaProject
Setting up a Backup Job
Cleaning up Temporary Files
Monitoring System Health
Sending Email Notifications
Rotating Logs
Custom Scheduling with Step Values
Viewing and Managing Cron Jobs

Scheduling Tasks with ‘at’ and ‘batch’
Introduction to ‘at’ and ‘batch’
Using at and batch in AlphaProject
Scheduling One-Time Tasks with at
Scheduling Tasks with Relative Time
Scheduling Tasks with Specific Dates
Using batch for System Load-Dependent Tasks
Combining at and batch with Other Utilities
Automating System Health Checks
Managing and Viewing Logs

Monitoring System Performance
Key Metrics to Monitor
System Performance Monitoring Tools

‘top’
‘vnstat’
‘nagios’
‘iftop’
‘psacct’
‘iostat’
‘netstat’
Sample Program: Monitoring Tools in AlphaProject
Monitoring CPU and Memory Usage
Tracking Network Traffic
Comprehensive System Monitoring with Nagios
Real-Time Network Monitoring with iftop
Detailed Process Accounting with psacct
Disk and I/O Statistics with iostat
Network Connections and Statistics with netstat

Log Files and System Logging
What Can Be Logged in Linux
Understanding Syslogs
Managing Syslogs with rsyslog
Installing and Configuring rsyslog
Understanding the rsyslog Configuration
Basic Configuration Example
Customizing System Logs for AlphaProject
Accessing and Analyzing Logs
Setting up Log Rotation
Remote Logging
Monitoring Logs with Logwatch
Sample Program: Logging Messages
Custom Application Logging

Log Rotation for Application Logs
Remote Logging Setup

Backing up and Restoring Systems
‘rsync’
Key Features of rsync
Using rsync for AlphaProject
Installing rsync
Backing up Data with rsync
Scheduling Backups with cron
Incremental Backups with rsync
Restoring Data with rsync
Verifying Backups
Advanced ‘rsync’ Options
Exclude Files
Compression
Bandwidth Limiting

Sample Program: Complete Backup and Restore Script

Perform Disk Partitioning
Using ‘fdisk’
Creating a New Partition with fdisk
Using ‘parted’
Creating a New Partition with parted
Using ‘gparted’
Creating a New Partition with gparted
Creating a Swap Partition
Resizing Partitions with parted
Creating Logical Volumes with LVM

Using SSH for Remote Management
Setting up SSH

Installing SSH Server
Installing SSH Client
Connecting to a Remote System
Key-Based Authentication
Generating SSH Keys
Copying the Public Key to the Remote Machine
Manually Adding the Public Key
SSH Config File
Creating an SSH Config File
Port Forwarding
Local Port Forwarding
Remote Port Forwarding
Copying Files using scp and rsync
Using ‘scp’
Using ‘rsync’

Executing Commands on a Remote System
Using tmux with SSH
Managing Multiple Servers with SSH
Using ‘cssh’
Monitoring Remote Systems with top and htop
Using ‘top’
Using ‘htop’

Summary

Chapter III: Upgrading, Installing, and Configuring Software and
Hardware

Overview

Package Management with ‘apt’
Introduction to ‘apt’ and ‘yum’
‘apt’ (Advanced Package Tool)

‘yum’ (Yellowdog Updater Modified)
Installing ‘apt’ in Our Existing Environment
Using ‘apt’ to Manage Packages
Updating the Package List
Upgrading Packages
Installing Packages
Removing Packages
Searching for Packages
Viewing Package Information
Holding and Unholding Packages
Adding and Removing Repositories
Sample Workflow: Managing Packages for AlphaProject

Installing a Web Server and Database
Setting up a Development Environment

Managing Dependencies
Finding Dependencies
Finding Dependencies with ‘apt’
Finding Reverse Dependencies
Updating Dependencies
Modifying Dependencies
Installing Specific Versions
Editing Configuration Files
Setting Environment Variables
Fixing Dependency Issues
Fixing Broken Packages
Resolving Conflicts
Checking for Missing Dependencies
Changing Permissions of Users/Applications for Libraries and Shared
Files

Changing File Permissions
Changing Ownership
Setting Permissions for Libraries
Managing User Permissions
Sample Program: Managing Dependencies for AlphaProject
Installing Apache, MySQL, and PHP (LAMP Stack)
Modifying Configuration Files
Setting Environment Variables
Changing Permissions

Configuring System Hardware
Configuring WiFi Networks

Using ‘nmcli’
Using ‘wpa_supplicant’
Configuring Firewalls
Using ‘ufw’
Using iptables
Configuring External Devices
Mounting USB Drives
Configuring Printers
Connecting to Bluetooth Devices
Sample Program: Configuring System Hardware for AlphaProject
Configuring Network Settings
Setting up the Firewall
Mounting and Using an External USB Drive
Configuring a Printer

Upgrading Kernel
Role of Kernel in System Functioning
Vulnerabilities to the Kernel

Upgrading the Kernel
Checking the Current Kernel Version
Upgrading the Kernel on Debian-based Systems (Ubuntu)
Upgrading to a Specific Kernel Version
Upgrading the Kernel on Red Hat-based Systems (CentOS, Fedora)
Handling Kernel Modules
Managing Kernel Updates with UKUU

Handling Device Drivers
Finding All Available Drivers
Using ‘lsmod’
Using ‘lspci’

Using ‘lshw’
Finding Drivers with Available Updates
Using ‘apt’
Using ‘ubuntu-drivers’
Using ‘fwupdmgr’
Updating Drivers
Updating Drivers with ‘apt’
Updating Proprietary Drivers with ‘ubuntu-drivers’
Updating Firmware with ‘fwupdmgr’
Automating Driver Updates
Using ‘cron-apt’ for Regular Updates
Using ‘fwupdmgr’ in a Cron Job
Sample Program: Updating and Automating Driver Updates
Finding Current Drivers
Identifying Available Driver Updates
Updating Drivers
Automating Updates

Setting up and Managing Repositories
Setting up Repositories
Adding a Repository
Manually Adding a Repository
Add a Repository Key
Update Package List
Managing Repositories
Enabling/Disabling Repositories
Removing a Repository
Using ‘apt’ Preferences
Protecting Repositories
GPC Keys
Enabling Secure APT

Sample Program: Setting up and Managing Repositories for AlphaProject
Adding a Repository
Managing Repositories
Setting Priorities with ‘apt’ Preferences
Protecting Repositories

Installing and Configuring Virtual Machines with VirtualBox
Installing VirtualBox
Setting up a Virtual Machine for AlphaProject
Installing Ubuntu on the Virtual Machine
Post-Installation Configuration

Summary

Chapter IV: User and Permission Management

Overview

Creating and Managing User Accounts
Creating User Accounts

Creating Regular User Accounts
Creating System User Accounts
Creating Service User Accounts
Managing User Accounts
Modifying User Accounts
Locking and Unlocking User Accounts
Deleting User Accounts
Viewing User Account Information
Managing User Account Expiry

Changing User Password Expiry
Creating Bulk User Accounts

Modifying User Profiles
‘Usermod’ Overview
Using ‘usermod’
Modifying Regular User Accounts
Modifying System User Accounts
Modifying Service User Accounts
Viewing Changes Made to User Accounts
Automating User Modifications

Setting File Permissions and Ownership
Understanding File Permissions
Setting Permissions with ‘chmod’
Using Symbolic Mode
Using Numeric Mode
Changing Ownership with ‘chown’
Sample Program: Setting Permissions and Ownership in AlphaProject
Using ‘umask’ to Set Default Permissions
Advanced Permissions with Setuid, Setgid, and Sticky Bit

Setuid
Setgid
Sticky Bit
Sample Program: Advanced Permissions
Creating a Script with Setuid
Testing the Script
Creating Files in Setgid Directory
Verifying Sticky Bit

Using ACLs (Access Control Lists)
Introduction to ACLs
Configuring ACLs
Sample Program: Using ACLs in AlphaProject
Scenario 1: Granting Temporary Write Access
Scenario 2: Providing Read-Only Access to Logs
Scenario 3: Inheriting Permissions for New Files
Scenario 4: Masking ACL Permissions
Scenario 5: Removing All ACL Entries

Managing User Sessions
Identifying User Sessions
Using ‘who’
Using ‘w’
Using ‘last’
Tracking User Sessions
Using ‘ps’
Using ‘top’
Using ‘htop’
Suspending User Sessions
Using ‘kill -STOP’
Using ‘pkill’

Resuming User Sessions
Using ‘kill -CONT’
Using ‘pkill’
Terminating User Sessions
Using ‘kill’
Using ‘pkill’
Using ‘killall’
Using ‘skill’
Sample Program: Managing User Sessions in AlphaProject

Scenario 1: Identifying and Tracking User Sessions
Scenario 2: Suspending and Resuming Sessions
Scenario 3: Terminating User Sessions

Configuring ‘sudo’ for Administrative Tasks
Necessity of Configuring ‘sudo’
Configuring ‘sudo’
Sample Program: Using ‘sudo’
Scenario 1: Basic Administrative Tasks
Scenario 2: User Management
Scenario 3: File and Directory Management
Scenario 4: Network Management
Scenario 5: System Monitoring
Scenario 6: Limiting Command Execution
Scenario 7: Using Aliases
Scenario 8: Including External Files

Password Policies and Management
Establishing Password Policies
Step 1: Install ‘pam_pwquality’
Step 2: Configure ‘pam_pwquality’
Step 3: Enforcing Password Expiration

Step 4: Applying Password Policies to Existing Users
Securing Passwords
Step 1: Use Strong Hashing Algorithms
Step 2: Restrict Access to Password Files
Step 3: Use ‘chpasswd’ for Batch Password Updates
Step 4: Enforce Password History
Sample Program: Enforcing Password Policy and Management
Scenario 1: Enforcing Password Complexity

Scenario 2: Implementing Password Expiration Policies
Scenario 3: Ensuring Secure Password Storage
Scenario 4: Batch Updating Passwords
Scenario 5: Preventing Password Reuse

Working with PAM (Pluggable Authentication Modules)
PAM Overview
Setting up PAM
Sample Program: PAM Configuration
Example 1: Basic Authentication with pam_unix
Example 2: Enabling MFA with ‘pam_google_authenticator’
Example 3: Restricting Login Times with ‘pam_time’
Example 4: Enforcing Password Complexity with ‘pam_pwquality’
Sample Program: Managing PAM for AlphaProject
Scenario 1: Protecting SSH Access
Scenario 2: Restricting Login Times for Developers
Scenario 3: Enforcing Account Lockout After Failed Attempts

Managing Group Memberships
Overview

Managing Group Memberships
Creating Groups
Adding Users to Groups
Removing Users from Groups
Modifying Group Properties
Sample Program: Managing Group Memberships in AlphaProject
Scenario 1: Setting up Initial Group Memberships
Scenario 2: Managing Access for a New Team Member
Scenario 3: Removing a Developer from the Project
Scenario 4: Creating and Managing Additional Groups

Scenario 5: Modifying Group Information
Scenario 6: Setting Group Ownership on Directories
Scenario 7: Managing Group Memberships Directly in /etc/group

Summary

Index

Epilogue

GitforGits

Prerequisites

This book is designed for IT professionals, aspiring system administrators,
and students who want to acquire essential Linux skills. It is also suitable
for any individual looking to build a strong foundation in Linux to
advance their IT career.

Codes Usage

Are you in need of some helpful code examples to assist you in your
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.

Not only is this book here to aid you in getting your job done, but you
have our permission to use the example code in your programs and
documentation. However, please note that if you are reproducing a
significant portion of the code, we do require you to contact us for
permission.

But don't worry, using several chunks of code from this book in your
program or answering a question by citing our book and quoting example
code does not require permission. But if you do choose to give credit, an
attribution typically includes the title, author, publisher, and ISBN. For
example, "Linux Basics for SysAdmin by Ryan Juan".

If you are unsure whether your intended use of the code examples falls
under fair use or the permissions outlined above, please do not hesitate to
reach out to us at

We are happy to assist and clarify any concerns.

Chapter I: Up and Running with Linux Systems

Overview

This chapter will set you on the path to becoming an expert Linux user,
with an emphasis on the widely used Ubuntu distribution. Ubuntu is a
popular operating system, and you will first learn what makes it special.
Once you get the hang of managing directories and files in Linux,
navigating the filesystem will be as natural as breathing. We will go over
the most fundamental Linux commands so you can do basic activities
quickly and easily. Get ready to dive into directory and file management
like a pro! You'll learn how to effortlessly create, transfer, and remove
files. In this chapter, you will also learn how to use the vi text editor, a
powerful tool for editing files, and the shell, an interface for dealing with
the system.

Another important topic you'll cover is package management, which
involves installing, updating, and removing software packages to ensure
your system is always up-to-date and runs properly. For proper
management of your machine's boot sequence and power down,
familiarity with the system's startup and shutdown procedures is vital. In
order to keep tabs on and manage all of your system's applications, one of
the most important skills you'll learn is process management. At last,
you'll learn the ins and outs of Linux's utilities, which are robust programs
that boost efficiency and let you do complicated jobs with just a few
commands. The goal of this chapter is to provide you with a strong
grounding in Linux so that you can manage common chores and become
ready for more sophisticated system administration subjects.

Understanding Linux Ubuntu

Ubuntu, a popular and user-friendly Linux distribution, is renowned for its
ease of use and robust community support. Developed by Canonical,
Ubuntu is based on Debian and follows a regular release cycle, offering
both Long Term Support (LTS) versions and interim releases. LTS
versions, supported for five years, provide stability and extended support,
making them ideal for production environments. Interim releases, with
nine months of support, offer the latest features and improvements for
those who want to stay on the cutting edge.

One of the first steps in understanding Ubuntu is to get familiar with its
installation process. Ubuntu offers a straightforward installation
experience, whether you are setting it up on a physical machine or a
virtual environment. The installation media, typically a bootable USB or
DVD, provides a graphical installer that guides you through language
selection, keyboard layout, and partitioning options. You can choose to
install Ubuntu alongside another operating system, replace an existing OS,
or configure custom partitions. During installation, you'll also set up a user
account and configure basic system settings.

Once installed, you'll be greeted by the GNOME desktop environment, the
default for Ubuntu. GNOME is designed for simplicity and ease of use,
featuring a clean interface with a top bar, a side dock, and an activities
overview. The top bar provides access to system settings, notifications,
and the clock. The side dock hosts frequently used applications and open
windows, while the activities overview offers an overview of all running

applications and workspaces. Understanding how to navigate and
customize the GNOME desktop will enhance your Ubuntu experience.

Ubuntu's package management system is another critical aspect to
understand. Ubuntu uses APT (Advanced Package Tool) for managing
software packages. APT handles the installation, upgrade, and removal of
software, ensuring that dependencies are resolved automatically. The
primary command-line tool for APT is which is used for various package
management tasks. For instance, sudo apt update refreshes the package
list, ensuring that you have the latest information about available software.
Following this, sudo apt upgrade upgrades all installed packages to their
latest versions. To install new software, sudo apt install package_name
retrieves and installs the specified package along with any necessary
dependencies.

Ubuntu repositories are collections of software packages available for
installation. The main repository includes free and open-source software
supported by Canonical, while the universe repository contains
community-maintained software. Restricted and multiverse repositories
offer proprietary software and non-free applications. Understanding these
repositories and how to enable or disable them using the software-
properties-gtk tool or editing the /etc/apt/sources.list file allows you to
control the software sources for your system.

Another vital component of Ubuntu is its update and upgrade process.
Regular updates keep your system secure and stable. The apt command
facilitates these updates, and for more significant upgrades, such as
moving from one LTS version to another, Ubuntu provides the do-release-
upgrade tool. This tool automates the upgrade process, ensuring that your

system transitions smoothly between major releases. It's essential to
understand how to use these tools to maintain an up-to-date system.

Ubuntu also offers extensive hardware support, including drivers for
various devices. The Additional Drivers tool, accessible from the system
settings, helps you manage proprietary drivers for your hardware, such as
graphics cards and Wi-Fi adapters. This tool detects available drivers and
allows you to install or switch between them, ensuring optimal
performance and compatibility with your hardware.

Networking in Ubuntu is another critical area. The NetworkManager
utility provides an intuitive interface for managing network connections,
including wired, wireless, and VPN connections. The graphical
NetworkManager applet, found in the system tray, allows you to connect
to networks, configure network settings, and troubleshoot connectivity
issues. For advanced network configurations, the nmcli command-line
tool provides comprehensive control over NetworkManager's capabilities.
Understanding how to configure and manage network connections ensures
that your system remains connected and accessible.

Ubuntu's security features are designed to protect your system from
threats. The Uncomplicated Firewall (UFW) offers a straightforward
interface for configuring firewall rules, enhancing network security. By
default, UFW is disabled, but it can be enabled and managed using simple
commands. For example, sudo ufw enable activates the firewall, while
sudo ufw allow 22/tcp allows SSH traffic through the firewall.
Additionally, Ubuntu supports AppArmor, a security module that confines
programs to a limited set of resources. AppArmor profiles define the
access permissions for applications, enhancing system security.

The Ubuntu Software Center, a graphical application for managing
software, simplifies the installation and removal of software packages.
The Software Center provides access to thousands of applications,
categorized for easy browsing. It also supports installing Snap packages, a
universal packaging format developed by Canonical. Snaps are self-
contained applications that include all necessary dependencies, allowing
them to run on any Linux distribution that supports Snapd. Understanding
how to use the Software Center and Snap packages expands the range of
available software for your system.

Another useful tool in Ubuntu is the Timeshift utility, which allows you to
create and manage system snapshots. Timeshift provides a way to restore
your system to a previous state, which is invaluable for recovering from
system failures or configuration errors. Snapshots can be scheduled to run
automatically or created manually, and they can be stored on local or
external storage. Understanding how to configure and use Timeshift
ensures that you have a reliable backup and recovery solution.

Simply put, learning Ubuntu entails becoming acquainted with its
installation method, desktop environment, package management system,
upgrade and upgrade methods, hardware support, networking capabilities,
security features, software management tools, and community resources.
Once you've mastered these concepts, you'll be prepared to dive deeper
into advanced Linux system management and use Ubuntu successfully for
diverse openings.

Navigating the Linux Filesystem

An essential ability for efficient system interaction and management is the
ability to navigate the Linux filesystem. Beginning with the root directory,
denoted by a forward slash (/), the Linux filesystem is structured
hierarchically. A structure similar to a tree is created with all the files and
directories emanating from this root. In order to make the most of this
filesystem, let us get into the nitty-gritty details and execute some useful
commands.

At the top of the hierarchy is the root directory (/), which contains several
important subdirectories. Some of the key directories include:

● Contains essential binary executables, like basic commands

● Stores system configuration files.

● Contains personal directories for each user.

● Holds variable data like logs and spool files.

● Houses user-installed software and libraries.

● Temporary files created by system and users.

Understanding these directories helps you locate files and perform
administrative tasks.

When navigating the filesystem, certain special characters and notations
are useful. The dot (.) represents the current directory, while the double
dot (..) represents the parent directory. For example, if you are in
/home/user/documents and you execute cd you will move up to

To print the current working directory, use the pwd (print working
directory) command. This command shows your current location in the
filesystem. For instance:

$ pwd

/home/user/documents

Changing directories is done with the cd (change directory) command. If
you want to move to a different directory, you can specify the path to that
directory. For example:

$ cd /etc

This command moves you to the /etc directory. If you want to return to
your home directory from anywhere in the filesystem, simply use cd
without any arguments:

$ cd

Or use the tilde (~) which is a shortcut for your home directory:

$ cd ~

Both commands will take you back to

To list the contents of a directory, the ls command is used. This command
can display files and subdirectories within the current directory. By
default, ls will show a basic list. Adding the -l option will provide a
detailed list, including permissions, number of links, owner, group, size,
and modification time:

$ ls -l

total 12

drwxr-xr-x 2 user user 4096 Jan 1 10:00 documents

-rw-r--r-- 1 user user 88 Jan 1 10:00 file.txt

To view hidden files, which are files starting with a dot (.), use the -a
option:

$ ls -a

. .. .bashrc documents file.txt

The . and .. entries you see represent the current and parent directories
respectively.

Creating and managing directories is straightforward with commands like
mkdir (make directory) and rmdir (remove directory). To create a new
directory:

$ mkdir new_directory

To remove an empty directory:

$ rmdir new_directory

If the directory is not empty, you’ll need to use rm with the -r (recursive)
option to remove it and all its contents:

$ rm -r new_directory

Navigating between directories and managing files can also be done using
relative and absolute paths. A relative path is specified in relation to the
current directory, while an absolute path is specified from the root
directory. For example, if you are in /home/user and you want to navigate
to you can use either the relative path:

$ cd documents

Or the absolute path:

$ cd /home/user/documents

Understanding these path concepts is crucial for efficient navigation and
file management.

We shall practice some common navigation scenarios. Assume you are in
your home directory and you want to list the contents of the /etc directory,
move to and then return to your home directory. Following are the
commands you would use:

$ ls /etc

$ cd /var/log

$ pwd

$ cd

This sequence lists the contents of changes the directory to prints the
current directory to confirm the location, and then returns to the home
directory.

Additionally, the tab completion feature is incredibly useful. When you
start typing a command or path, pressing the Tab key will auto-complete

the command or show possible completions if there is more than one
match.

For example:

$ cd /etc/sys

Pressing Tab after sys will auto-complete to /etc/systemd/ if it is the only
match, or show all matches if there are multiple directories starting with

Another useful command is which visually displays the directory
structure. If tree is not installed, you can install it using:

$ sudo apt install tree

Then, to view the directory structure from the current directory:

$ tree

This command provides a hierarchical view of directories and
subdirectories, making it easier to understand the filesystem layout.

The find command helps you locate files and directories. It’s particularly
useful when you’re not sure where something is located. For example, to
find a file named file.txt starting from the root directory:

$ sudo find / -name file.txt

This command searches the entire filesystem for displaying the path if it
exists.

The locate command is another powerful search tool, using a database of
indexed files. It’s faster than find but requires updating the database
periodically using To find a file using

$ locate file.txt

If the database is up-to-date, this command will quickly display the paths
to

Understanding symbolic links (symlinks) is also important. A symlink is a
file that points to another file or directory. Creating a symlink uses the ln -
s command. For example, to create a symlink to /etc/passwd in your home
directory:

$ ln -s /etc/passwd mypasswd

Here, mypasswd in your home directory points to You can use ls -l to
verify:

$ ls -l mypasswd

lrwxrwxrwx 1 user user 12 Jan 1 12:00 mypasswd -> /etc/passwd

Symlinks are useful for creating shortcuts and simplifying file
management.

Additionally, there are tools like and along with symbolic links, that
enhance your ability to manage and navigate the filesystem efficiently.

Basic Linux Commands

Being well-versed in a core set of commands is critical for Linux system
administrators to efficiently manage and troubleshoot systems. Let us take
a look at a few of the most common commands that each system
administrator should know. Some examples of these are commands for
system monitoring, process management tools, and network utilities. We'll
go over the basics of each command, what it does, and some examples to
help you put it all together.

Network Configuration and Troubleshooting

‘ip’ and ‘ifconfig’

The ip command is a powerful tool for network configuration. It can
replace the older ifconfig command, offering more features and flexibility.
The ip command allows you to view and configure network interfaces,
routing tables, and more. To view network interfaces and their details, use:

$ ip addr

This command lists all network interfaces with their IP addresses and
other details. To bring an interface up or down, use:

$ sudo ip link set eth0 up

$ sudo ip link set eth0 down

The ifconfig command, though older, is still widely used. To display
network interfaces, you can use:

$ ifconfig

To configure an IP address on an interface with

$ sudo ifconfig eth0 192.168.1.100 netmask 255.255.255.0

Both commands are useful, but ip is recommended for its broader
capabilities and modern features.

‘mtr’

The mtr (My Traceroute) command combines the functionality of ping
and providing real-time network diagnostics. It helps identify where
packet loss and latency occur. To use simply enter:

$ mtr gitforgits.com

This command starts a continuous network diagnostic to the specified
domain, showing each hop and its performance metrics.

File and Text Processing

‘find’

The find command searches for files and directories based on various
criteria, such as name, size, or modification date. To search for a file
named file.txt starting from the root directory, use:

$ sudo find / -name file.txt

This command searches the entire filesystem and lists all paths to To find
files modified in the last 7 days:

$ find /home/user -mtime -7

This command searches the /home/user directory for files modified within
the last week.

‘awk’

The awk command is a powerful text processing tool, often used for data
extraction and reporting. It reads input line by line, splits each line into
fields, and processes them based on specified patterns. For example, to
print the second field of each line in a file:

$ awk '{print $2}' file.txt

If you have a CSV file and want to print the first and third columns, you
can use:

$ awk -F, '{print $1, $3}' file.csv

This command uses a comma as the field separator and prints the desired
columns.

Network Monitoring and Diagnostics

‘tcpdump’

The tcpdump command captures network packets and displays them in
real-time, useful for network troubleshooting and security analysis. To
capture packets on the eth0 interface, use:

$ sudo tcpdump -i eth0

To capture and save packets to a file for later analysis:

$ sudo tcpdump -i eth0 -w capture.pcap

To read the saved capture file, use:

$ sudo tcpdump -r capture.pcap

‘netstat’

The netstat command displays network connections, routing tables,
interface statistics, and more. To list all active connections and listening
ports, use:

$ netstat -tuln

To display network statistics, such as packets transmitted and received,
use:

$ netstat -s

netstat provides a comprehensive view of your network's current state.

‘nslookup’

The nslookup command queries DNS to obtain domain name or IP address
mapping. It’s useful for troubleshooting DNS issues. To find the IP
address of a domain:

$ nslookup gitforgits.com

To perform a reverse lookup, converting an IP address to a domain name:

$ nslookup 192.168.1.1

This command queries the DNS server for the corresponding domain
name.

System and Process Management

‘sudo’

The sudo command allows users to execute commands with superuser
privileges, necessary for performing administrative tasks. To edit a system
file with superuser permissions:

$ sudo nano /etc/hosts

To execute a command as another user, specify the -u option:

$ sudo -u username command

sudo is essential for managing system configurations and installing
software.

‘tmux’

The tmux command is a terminal multiplexer that enables you to run
multiple terminal sessions within a single window. It’s useful for
managing multiple tasks without opening several terminal windows. To
start a new session:

$ tmux

To detach from the session while keeping it running, use Ctrl+b followed
by To reattach to the session:

$ tmux attach

tmux helps you organize and switch between tasks efficiently.

‘lsns’

The lsns command lists information about system namespaces, which are
used for isolation in Linux containers and virtual environments. To display
all namespaces:

$ lsns

This command shows the PID, type, and other details of each namespace,
useful for managing and troubleshooting containerized applications.

‘pkill’

The pkill command sends signals to processes based on their name or
other attributes. It’s commonly used to terminate processes. To kill all
processes named

$ pkill example

To send a specific signal, such as SIGKILL (kill signal):

$ pkill -9 example

pkill provides a straightforward way to manage running processes.

Email and Web Requests

‘mail’

The mail command sends and receives emails from the command line,
useful for scripting and automated notifications. To send an email:

$ echo "This is the body" | mail -s "Subject" user@gitforgits.com

To read received emails:

$ mail

This command lists the inbox messages, which you can navigate using
commands within the mail interface.

‘curl’

The curl command transfers data to or from a server, supporting various
protocols like HTTP, FTP, and more. To download a file from a URL:

$ curl -O http://gitforgits.com/file.txt

To send a GET request and display the response:

$ curl http://gitforgits.com

For a POST request with data:

$ curl -d "param1=value1¶m2=value2" -X POST http://gitforgits.com

curl is a versatile tool for web interactions and API testing.

‘watch’

The watch command runs a command at regular intervals, displaying the
output and highlighting changes. It’s useful for monitoring system status
or command output over time. To repeatedly execute df -h and show disk
usage:

$ watch df -h

To run a custom script every two seconds:

$ watch -n 2 ./myscript.sh

watch helps you keep an eye on changing data and system performance.

Sample Program: Putting All Commands Together

Now that we know how these commands work in theoretical terms, let us
see them in action by implementing a number of instances.

Network Configuration and Diagnostics

After configuring a network interface with ip or use mtr to diagnose
network issues:

$ sudo ip addr add 192.168.1.100/24 dev eth0

$ sudo ip link set eth0 up

$ mtr google.com

In the above code snippet, you set an IP address for bring it up, and start a
traceroute to Google.

Searching and Processing Files

Search for all .log files modified in the last 7 days and print specific
columns using find and

$ find /var/log -name "*.log" -mtime -7 | awk -F/ '{print $NF}'

This command lists log files and prints their names.

Capturing and Analyzing Network Traffic

Capture network traffic on eth0 and analyze the output:

$ sudo tcpdump -i eth0 -w traffic.pcap

$ sudo tcpdump -r traffic.pcap

This command captures packets and reads the capture file.

DNS Queries and Network Statistics

Query the DNS for a domain and check network connections:

$ nslookup gitforgits.com

$ netstat -tuln

This shows DNS information and active network connections.

System and Process Management

Use sudo to edit a system file, manage sessions with and kill a process:

$ sudo nano /etc/fstab

$ tmux

$ pkill myprocess

This sequence edits a configuration file, starts a new tmux session, and
terminates a process.

Email and Web Requests

Send an email and download a file using mail and

$ echo "Report is ready" | mail -s "Report Notification"
admin@gitforgits.com

$ curl -O http://gitforgits.com/report.pdf

This sends a notification email and downloads a file.

Monitoring System Changes

Use watch to monitor disk usage:

$ watch df -h

This continuously displays disk usage every two seconds.

All sorts of administrative and troubleshooting tasks rely on these
commands, which let you operate systems efficiently and effectively. Your
command-line skills will greatly improve as you incorporate them into
your routine tasks and have increased proficiency in administering Linux
settings.

File and Directory Management

Take on the role of a tech company's system administrator. It is your
responsibility to establish the directory structure for the new project
"AlphaProject." Developers, designers, and quality assurance testers are
all part of separate teams that need to work together on this project.
Access requirements vary per team. It is your responsibility to oversee the
organization of this directory, set permissions, and make sure everything
runs smoothly and securely.

Setting up the Directory Structure

First, let us create the main directory and subdirectories for each team
within the project. Use the mkdir command:

$ mkdir -p /projects/AlphaProject/{developers,designers,qa}

This command creates the main directory /projects/AlphaProject and three
subdirectories: and all in one go.

Creating Files and Directories

Within these directories, you will create some files and further
subdirectories. For example, the developers need a subdirectory for
scripts:

$ mkdir /projects/AlphaProject/developers/scripts

And the designers need a directory for assets:

$ mkdir /projects/AlphaProject/designers/assets

You can also create files using the touch command:

$ touch /projects/AlphaProject/developers/scripts/init.sh

$ touch /projects/AlphaProject/designers/assets/logo.png

These commands create an empty script file and an image file.

Accessing Hidden Files and Directories

Hidden files and directories in Linux start with a dot To list all files,
including hidden ones, use the ls -a command:

$ ls -a /projects/AlphaProject/developers

. .. scripts .hidden_config

This lists all files, including

Viewing File and Directory Permissions

Permissions in Linux are crucial for controlling access. Use the ls -l
command to view detailed information, including permissions:

$ ls -l /projects/AlphaProject/developers/scripts

total 0

-rw-r--r-- 1 user group 0 Jan 1 12:00 init.sh

The output shows the permissions, owner, and group for each file.

Changing File and Directory Permissions

To modify permissions, use the chmod command. For instance, to give
execute permission to the script file:

$ chmod +x /projects/AlphaProject/developers/scripts/init.sh

You can also set specific permissions using numeric mode. For example,
setting read, write, and execute permissions for the owner, and read and
execute for the group and others:

$ chmod 755 /projects/AlphaProject/developers/scripts/init.sh

This command sets the permissions as

Setting Ownership

Use the chown command to change the owner and group of a file or
directory. For instance, to set the owner to devuser and the group to

$ sudo chown devuser:devgroup
/projects/AlphaProject/developers/scripts/init.sh

This command changes the owner and group accordingly.

Accessing Secured Files

Sometimes, you need to access files with restricted permissions. Use sudo
to execute commands with superuser privileges:

$ sudo cat /etc/securefile

This command allows you to view the contents of a file that requires
elevated permissions.

Understanding Permissions and Access Control

To understand who has access to a file or directory, look at the
permissions output. The permissions string (e.g., consists of:

● A type indicator for files, d for directories)

● Owner permissions (rwx)

● Group permissions (r-x)

● Others permissions (r-x)

Each set of permissions is represented by three characters: read write and
execute A dash means the permission is not granted.

For example, if you see:

$ ls -l /projects/AlphaProject/developers/scripts/init.sh

-rwxr-xr-x 1 devuser devgroup 0 Jan 1 12:00 init.sh

It means the owner devuser has read, write, and execute permissions, the
group devgroup has read and execute permissions, and others also have
read and execute permissions.

Managing Large Files and Directories

Sometimes, you need to handle large files or directories. Use the du (disk
usage) command to check the size of directories:

$ du -sh /projects/AlphaProject/

This command gives a summary of the disk usage in a human-readable
format.

To find the largest files and directories, use:

$ du -ah /projects/AlphaProject/ | sort -rh | head -n 10

This command lists the top 10 largest files and directories within

Moving and Copying Files

Use the mv command to move or rename files and directories. For
instance, to move a script to a different directory:

$ mv /projects/AlphaProject/developers/scripts/init.sh
/projects/AlphaProject/qa/

To rename a directory:

$ mv /projects/AlphaProject/developers/scripts
/projects/AlphaProject/developers/tools

The cp command copies files and directories. To copy a file:

$ cp /projects/AlphaProject/designers/assets/logo.png
/projects/AlphaProject/qa/

To copy an entire directory, use the -r (recursive) option:

$ cp -r /projects/AlphaProject/developers /projects/Backup/

This command copies the developers directory and its contents to

Deleting Files and Directories

To remove files, use the rm command. For example, to delete a file:

$ rm /projects/AlphaProject/qa/init.sh

To remove an empty directory, use

$ rmdir /projects/AlphaProject/qa/temp

To remove a directory and its contents, use rm

$ rm -r /projects/AlphaProject/qa/temp

Finding Files Based on Permissions

Sometimes, you might need to find files with specific permissions. Use
the find command for this purpose. For example, to find all files with 777
permissions:

$ find /projects/AlphaProject -type f -perm 0777

This command searches for files with read, write, and execute permissions
for everyone.

Working with Links

Linux supports symbolic (soft) and hard links. A symbolic link is like a
shortcut to another file, while a hard link is an additional name for an
existing file. To create a symbolic link:

$ ln -s /projects/AlphaProject/designers/assets/logo.png
/projects/AlphaProject/logo_link.png

To create a hard link:

$ ln /projects/AlphaProject/developers/scripts/init.sh
/projects/AlphaProject/init_link.sh

Symbolic links can point to directories, while hard links cannot. Use ls -l
to view link details:

$ ls -l /projects/AlphaProject/logo_link.png

lrwxrwxrwx 1 user group 40 Jan 1 12:00
/projects/AlphaProject/logo_link.png ->
/projects/AlphaProject/designers/assets/logo.png

Archiving and Compressing Files

To archive and compress files, use the tar command. Create a tarball
(compressed archive) of the project directory:

$ tar -czvf /projects/AlphaProject.tar.gz /projects/AlphaProject

To extract the contents of a tarball:

$ tar -xzvf /projects/AlphaProject.tar.gz -C /projects/

The -c option creates an archive, -x extracts it, -z
compresses/uncompresses with gzip, -v shows progress, and -f specifies
the filename.

File Integrity and Security

To ensure file integrity, use the md5sum or sha256sum commands.
Generate a checksum for a file:

$ md5sum /projects/AlphaProject/designers/assets/logo.png

d41d8cd98f00b204e9800998ecf8427e
/projects/AlphaProject/designers/assets/logo.png

This command outputs a unique hash, which can be used to verify the
file's integrity later.

Scheduling Regular Tasks

To automate file and directory management tasks, use crontab to schedule
commands. Edit the crontab file:

$ crontab -e

Add a job to back up the project directory every day at midnight:

0 0 * * * tar -czvf /backup/AlphaProject_$(date +\%F).tar.gz
/projects/AlphaProject

This cron job creates a compressed backup with the current date in the
filename.

Monitoring File and Directory Changes

To monitor changes in real-time, use inotifywait from the inotify-tools
package. Install it using:

$ sudo apt install inotify-tools

Monitor changes in the project directory:

$ inotifywait -m /projects/AlphaProject

This command watches for modifications, deletions, and other events in
the specified directory.

Through the real-world example of organizing a project's directory
structure, you discovered how to safely handle files, see and change
permissions, create and manage directories, and access hidden files. These
abilities, which will be expanded upon in later chapters, are fundamental
for efficient system administration. As you go along, keep in mind that the
"AlphaProject" is a great way to put everything you've learned into
practice and deepen your comprehension of these commands.

Introduction to Shell

The shell is a crucial component of the Linux operating system, serving as
the interface between the user and the kernel. It allows users to execute
commands, run scripts, and automate tasks. The shell interprets user input
and translates it into actions performed by the system. There are various
types of shells available in Linux, such as Bash (Bourne Again Shell),
Zsh, and Fish, but Bash is the most widely used and is considered the best
shell for system administrators due to its robust features and extensive
scripting capabilities.

Purpose of Shell

The primary purpose of the shell is to provide an environment where users
can interact with the operating system. It facilitates the execution of
commands, running of programs, and manipulation of files and
directories. The shell also supports scripting, enabling users to automate
repetitive tasks, schedule jobs, and create complex workflows. When a
user types a command in the terminal, the shell interprets it and
communicates with the kernel to perform the requested action.

Introducing Bash

Bash, short for Bourne Again Shell, is an enhanced version of the original
Unix shell (sh). It is the default shell on most Linux distributions,
including Ubuntu. Bash provides powerful features like command history,

tab completion, and scripting capabilities, making it an excellent choice
for system administrators.

To start using Bash, you simply open a terminal window. In most Linux
distributions, Bash is the default shell, so you don’t need to do anything
special to start it. You can check the current shell with the following
command:

$ echo $SHELL

/bin/bash

This command outputs the path to the current shell, confirming that you
are using Bash.

Basic Bash Commands

We shall start with some basic commands to get familiar with Bash. These
commands will help you navigate the filesystem, manage files, and
execute programs.

Navigating Directories

Use the cd command to change directories:

$ cd /projects/AlphaProject

$ pwd

/projects/AlphaProject

Listing Directory Contents

The ls command lists the contents of a directory:

$ ls

developers designers qa

Add -l for a detailed listing:

$ ls -l

total 12

drwxr-xr-x 2 user user 4096 Jan 1 12:00 developers

drwxr-xr-x 2 user user 4096 Jan 1 12:00 designers

drwxr-xr-x 2 user user 4096 Jan 1 12:00 qa

Creating and Deleting Files

Use the touch command to create an empty file and rm to delete it:

$ touch testfile.txt

$ ls

developers designers qa testfile.txt

$ rm testfile.txt

Copying and Moving Files

The cp command copies files, and mv moves or renames them:

$ cp /projects/AlphaProject/designers/assets/logo.png
/projects/AlphaProject/qa/

$ mv /projects/AlphaProject/qa/logo.png
/projects/AlphaProject/qa/logo_backup.png

Using Command History

One of the convenient features of Bash is command history. Bash keeps a
record of previously executed commands, which you can access using the
up and down arrow keys. This feature saves time and reduces errors by
allowing you to quickly repeat or modify previous commands.

To view the command history, use:

$ history

This command lists all previously executed commands with their
respective numbers. You can rerun a command by typing ! followed by the
command number:

$!10

This reruns the command listed as number 10 in the history.

Tab Completion

Bash supports tab completion, which speeds up typing and reduces errors.
When you start typing a command, file name, or directory name, pressing
the Tab key will auto-complete the text or show possible completions. For
example:

$ cd /projects/AlphaProject/developers/sc

If there is only one directory that starts with Bash will auto-complete it to
If there are multiple matches, pressing Tab again will display all
possibilities.

Bash Variables

Bash allows you to create and use variables to store data. Variables can
hold text, numbers, or command output. To create a variable, simply
assign a value to it:

$ PROJECT_DIR=/projects/AlphaProject

To use the variable, prefix it with a dollar sign

$ cd $PROJECT_DIR

$ pwd

/projects/AlphaProject

Variables are useful for storing paths, filenames, and other data that you
frequently use in your scripts or commands.

Bash Scripting

Bash scripting enables you to automate tasks by writing scripts that
execute a series of commands. A Bash script is simply a text file with a .sh
extension that contains Bash commands.

To create a basic script,

● Open a text editor and enter the following lines:

#!/bin/bash

echo "Hello, AlphaProject!"

● Save the file as

● Make the script executable:

$ chmod +x hello.sh

● Run the script:

$./hello.sh

Hello, AlphaProject!

The #!/bin/bash line at the top is called a shebang and indicates that the
script should be run using Bash. The echo command prints the text to the
terminal.

Conditional Statements

Bash scripts can include conditional statements to perform different
actions based on conditions. The if statement is used to test conditions:

#!/bin/bash

if [-d "/projects/AlphaProject"]; then

echo "AlphaProject directory exists."

else

echo "AlphaProject directory does not exist."

fi

Save this script as make it executable, and run it:

$ chmod +x check_dir.sh

$./check_dir.sh

AlphaProject directory exists.

The -d option checks if the specified path is a directory.

Loops in Bash

Loops allow you to execute a set of commands multiple times. The for
loop iterates over a list of items:

#!/bin/bash

for team in developers designers qa; do

echo "Setting up $team directory..."

mkdir -p /projects/AlphaProject/$team

done

Save this script as make it executable, and run it:

$ chmod +x setup_teams.sh

$./setup_teams.sh

Setting up developers directory...

Setting up designers directory...

Setting up qa directory...

This script creates directories for each team in the AlphaProject.

The while loop runs as long as a condition is true:

#!/bin/bash

count=1

while [$count -le 5]; do

echo "Count: $count"

((count++))

done

Save this script as make it executable, and run it:

$ chmod +x count.sh

$./count.sh

Count: 1

Count: 2

Count: 3

Count: 4

Count: 5

This script counts from 1 to 5, demonstrating the use of a while loop.

Functions in Bash

Functions in Bash allow you to group commands and reuse them. Define a
function by using the function keyword followed by the function name
and curly braces:

#!/bin/bash

function greet {

echo "Hello, $1!"

}

greet AlphaProject

Save this script as make it executable, and run it:

$ chmod +x greet.sh

$./greet.sh

Hello, AlphaProject!

This script defines a greet function that takes an argument and prints a
greeting message.

All system administrators must possess these skills, as they will provide
the basis for the more advanced topics covered in the sections that follow.
As we move on with the AlphaProject use-case, you'll discover the
practical applications of Bash's capabilities, which will boost your skills
and self-assurance when it comes to administering Linux systems.

Basics of Package Management

Purpose of Managing Packages

A package manager automates the process of managing software
packages, including resolving dependencies, downloading, and
configuring software. The AlphaProject team is utilizing Ubuntu, which
comes with its default package manager being the Advanced Package Tool
(APT). Package management's principal objective is to streamline
program installation, upgrade, and removal processes. It checks that the
software integrates correctly with the system and that all dependencies are
met. Additionally, package management makes it easier to apply updates
and patches, which helps to maintain the system secure and reliable.

Updating Package Lists and Upgrading Software

Before installing or upgrading packages, it is essential to update the
package list, which ensures that you have the latest information about
available software. Use the following command to update the package list:

$ sudo apt update

This command fetches the latest package information from the
repositories configured on your system.

After updating the package list, you can upgrade all installed packages to
their latest versions with:

$ sudo apt upgrade

This command downloads and installs updates for all installed packages.
If you want to upgrade only specific packages, you can specify them:

$ sudo apt upgrade package_name

For a more comprehensive upgrade that also removes obsolete packages,
use:

$ sudo apt full-upgrade

Installing Packages

To install a new package, use the apt install command. For instance, if you
need to install Git for the AlphaProject, you would run:

$ sudo apt install git

APT resolves and installs any dependencies required by Git, ensuring that
it works correctly on your system.

Viewing Installed Packages

To view a list of all installed packages, use the dpkg --list command:

$ dpkg --list

This command displays a detailed list of installed packages, including
their names, versions, and descriptions.

If you need to find information about a specific package, use apt show
followed by the package name. For example, to view details about Git:

$ apt show git

This command provides detailed information about the Git package,
including its dependencies, description, and installed version.

Deleting Packages

To remove a package that is no longer needed, use the apt remove
command:

$ sudo apt remove package_name

For example, to remove Git:

$ sudo apt remove git

If you want to remove a package along with its configuration files, use:

$ sudo apt purge package_name

For example, to completely remove Git and its configuration files:

$ sudo apt purge git

After removing packages, it is a good idea to clean up unnecessary
dependencies with:

$ sudo apt autoremove

This command removes packages that were installed as dependencies but
are no longer required.

Finding Packages

To search for packages, use the apt search command followed by a
keyword. For example, to find packages related to Python, you would run:

$ apt search python

This command lists all packages that match the keyword, helping you
discover new software that may be useful for your projects.

Working with Repositories

Repositories are locations where packages are stored and from which they
can be downloaded and installed. Ubuntu’s package manager uses several
default repositories, but you can also add custom repositories to access
additional software.

To add a new repository, use the add-apt-repository command. For
example, to add a PPA (Personal Package Archive) for the latest version of
Node.js:

$ sudo add-apt-repository ppa:chris-lea/node.js

$ sudo apt update

$ sudo apt install nodejs

After adding the repository, update the package list to include the new
software and then install the desired package.

Pinning Packages

Sometimes, you may want to prevent a package from being updated. This
is known as pinning. To pin a package, you create a preferences file in For
example, to pin Git to its current version, create a file named git in
/etc/apt/preferences.d/ with the following content:

Package: git

Pin: version x.y.z

Pin-Priority: 1001

Replace x.y.z with the desired version number. This configuration
prevents Git from being updated during an upgrade.

Sample Program: Managing Packages for AlphaProject

For the AlphaProject, suppose we need several software tools, such as Git,
Node.js, and Docker. Following is how you would manage these packages
using APT:

● Update Package List:

$ sudo apt update

● Install Git:

$ sudo apt install git

● Install Node.js from a PPA:

$ sudo add-apt-repository ppa:chris-lea/node.js

$ sudo apt update

$ sudo apt install nodejs

● Install Docker:

○ First, add Docker’s official GPG key and repository:

$ sudo apt install apt-transport-https ca-certificates curl software-
properties-common

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -

$ sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

$ sudo apt update

$ sudo apt install docker-ce

● Verify Installations:

○ Check that Git, Node.js, and Docker are installed correctly:

$ git --version

git version 2.x.y

$ node --version

v14.x.y

$ docker --version

Docker version 19.x.y, build abcdef

● Pin Docker to Prevent Automatic Updates:

○ Create a preferences file for Docker:

$ echo -e "Package: docker-ce\nPin: version 19.x.y\nPin-Priority: 1001" |
sudo tee /etc/apt/preferences.d/docker-ce

● Update All Installed Packages:

$ sudo apt upgrade

● Remove an Unneeded Package:

○ If you decide to remove Node.js:

$ sudo apt remove nodejs

$ sudo apt autoremove

All required software tools must be installed, updated, and managed
correctly for the AlphaProject. Follow these above procedures to
accomplish this.

System Startup and Shutdown

When it comes to managing the stability and performance of your servers,
it is necessary to manage the processes involved in starting up and
shutting down the system. Specifically for the AlphaProject, we will go
over the necessary commands for powering down and starting up systems,
as well as how to automate these tasks.

Shutting Down and Rebooting the System

To shut down the system immediately, use the shutdown command with
the -h (halt) option:

$ sudo shutdown -h now

This command powers off the system immediately. You can also schedule
a shutdown at a specific time. For example, to shut down the system at
10:30 PM:

$ sudo shutdown -h 22:30

If you need to cancel a scheduled shutdown, use:

$ sudo shutdown -c

To reboot the system, use the -r (reboot) option:

$ sudo shutdown -r now

Alternatively, you can use the reboot command directly:

$ sudo reboot

Booting the System

Booting the system typically involves turning on the machine and
allowing it to go through the boot process, which includes loading the
bootloader (GRUB), the kernel, and initializing system services. On a
remote server, you would usually rely on remote management tools to
initiate a reboot if necessary.

Automating Startup and Shutdown

Automation can help ensure that your systems start up and shut down
according to a schedule. This is particularly useful for development
environments or non-critical systems.

To automate shutdowns, you can use a time-based job scheduler in Unix-
like operating systems. To schedule a shutdown at midnight every day,
edit the crontab file:

$ sudo crontab -e

Add the following line:

0 0 * * * /sbin/shutdown -h now

This cron job schedules a system shutdown at midnight daily.

Automating system startups is more complex and depends on your
hardware. Some systems support scheduling startups in the BIOS/UEFI
settings. Alternatively, you can use Wake-on-LAN (WoL) if your network

and hardware support it. To configure WoL, ensure your network interface
is set up to receive the wake-up signal. First, install the ethtool package:

$ sudo apt install ethtool

Then enable WoL on your network interface (e.g.,

$ sudo ethtool -s eth0 wol g

To wake up the system, you’ll need another machine to send the wake-up
signal using a tool like

$ sudo apt install wakeonlan

$ wakeonlan

Replace with the actual MAC address of the system you want to wake up.

Managing Specific Services

Services are essential parts of your system that perform various functions,
such as running web servers, databases, or other background processes.
Managing these services effectively ensures that your system runs
smoothly.

Starting and Stopping Services

Use the systemctl command to manage services. To start a service, use:

$ sudo systemctl start service_name

For example, to start the Apache web server:

$ sudo systemctl start apache2

To stop a service, use:

$ sudo systemctl stop service_name

For example, to stop Apache:

$ sudo systemctl stop apache2

To restart a service, use:

$ sudo systemctl restart service_name

To reload the configuration without stopping the service:

$ sudo systemctl reload service_name

Enabling and Disabling Services at Boot

To ensure a service starts automatically at boot, use the enable command:

$ sudo systemctl enable service_name

To disable a service from starting at boot:

$ sudo systemctl disable service_name

Checking Service Status

To check the status of a service, use:

$ sudo systemctl status service_name

This command provides detailed information about the service, including
whether it is running, its last startup time, and any recent log entries.

Sample Program: Managing AlphaProject Services

Let us assume AlphaProject requires a web server (Apache) and a
database server (MySQL). Following is how you manage these services:

● Start Apache and MySQL:

$ sudo systemctl start apache2

$ sudo systemctl start mysql

● Ensure Apache and MySQL Start at Boot:

$ sudo systemctl enable apache2

$ sudo systemctl enable mysql

● Check the Status of Apache and MySQL:

$ sudo systemctl status apache2

$ sudo systemctl status mysql

● Stop Apache and MySQL:

$ sudo systemctl stop apache2

$ sudo systemctl stop mysql

● Restart Apache and MySQL:

$ sudo systemctl restart apache2

$ sudo systemctl restart mysql

Scheduling Service Management with Cron

In addition to automating shutdowns, you can use cron to schedule service
management tasks. For instance, if you want to restart Apache every
Sunday at 2 AM to ensure it runs smoothly, add a cron job:

$ sudo crontab -e

Add the following line:

0 2 * * 0 /bin/systemctl restart apache2

This job restarts Apache every Sunday at 2 AM.

Logging and Monitoring Services

It’s important to monitor services and check their logs to troubleshoot
issues. Logs are typically stored in the /var/log directory. For Apache, logs
can be found in:

$ ls /var/log/apache2/

To view the most recent entries in the Apache error log:

$ tail -f /var/log/apache2/error.log

The tail -f command continuously displays new log entries, making it
easier to monitor live activities.

If you want to keep AlphaProject running smoothly, you need to know
how the system starts and stops and how to manage individual services.

Your system's seamless operation, efficient management of services, and
ability to resolve difficulties by monitoring logs are all guaranteed by
these skills.

Managing Processes

A process is an instance of a program in execution, and each process has a
unique process ID (PID). There are four possible states for a process:
running, sleeping, stopped, and zombie. To make sure your system works
well and meets user demands, you need to know these states and how to
handle processes.

Stages of a Process

1. The process is actively using the CPU.

Sleeping: The process is waiting for a resource or event (e.g., I/O
operations). This can be further divided into:

● Interruptible Sleep: The process can be interrupted by signals.

● Uninterruptible Sleep: The process is waiting for a hardware
condition and cannot be interrupted.

Stopped: The process has been stopped, usually by a signal or because it is
being debugged.

Zombie: The process has completed execution, but its parent has not yet
read its exit status.

Displaying Running Processes

To view running processes, use the ps command, which provides a
snapshot of current processes. The ps aux command gives a detailed list of
all processes:

$ ps aux

This output includes information such as the user running the process,
PID, CPU and memory usage, start time, and command.

For a real-time view of running processes, use the top command:

$ top

top displays an interactive, dynamic view of system processes, which
updates every few seconds. It shows CPU and memory usage, process
IDs, and other key metrics.

Another powerful tool is which is a more user-friendly version of

$ sudo apt install htop

$ htop

htop provides a colorful, interactive interface, making it easier to navigate
and manage processes.

Starting and Terminating Processes

To start a process, simply run a command. For example, to start the nano
text editor:

$ nano

To start a process in the background, append an ampersand to the
command:

$ nano &

This runs nano in the background, allowing you to continue using the
terminal.

To terminate a process, use the kill command followed by the PID. First,
find the PID using ps or

$ pgrep nano

1234

$ kill 1234

If a process does not terminate with a normal kill signal, use kill -9 to
forcefully terminate it:

$ kill -9 1234

Adjusting Process Priority

The nice and renice commands adjust process priority. Priority ranges
from -20 (highest priority) to 19 (lowest priority). To start a process with a
specific priority, use

$ nice -n 10 nano

This starts nano with a lower priority. To change the priority of an existing
process, use renice followed by the new priority and PID:

$ renice -n 5 -p 1234

This command sets the priority of the process with PID 1234 to 5.

Suspending and Resuming Processes

To suspend a process running in the foreground, press This stops the
process and places it in the background. You can view suspended jobs
using the jobs command:

$ jobs

[1]+ Stopped nano

To resume a suspended job in the foreground, use the fg command
followed by the job number:

$ fg %1

To resume the job in the background, use

$ bg %1

Monitoring Process Activity

For detailed monitoring of process activity, use This tool traces system
calls and signals. To monitor a running process:

$ sudo strace -p 1234

To trace a new process from start:

$ strace nano

Sample Program: Managing Processes for AlphaProject

We shall consider some practical scenarios for managing processes in the
context of AlphaProject:

Starting a Web Server

To start the Apache web server:

$ sudo systemctl start apache2

Verify it is running:

$ sudo systemctl status apache2

Running a Background Script

Suppose you have a maintenance script maintenance.sh that you want to
run in the background:

$./maintenance.sh &

Check the background job:

$ jobs

[1]+ Running ./maintenance.sh &

Monitoring Web Server Activity

Use htop to monitor the Apache server and other processes:

$ htop

Look for the apache2 processes to check their resource usage.

Terminating a Misbehaving Process

If a script is consuming too many resources, find its PID and terminate it.
For instance, if maintenance.sh has PID 5678:

$ kill 5678

If it doesn’t respond:

$ kill -9 5678

Changing the Priority of a Backup Process

Suppose you are running a backup script backup.sh and want to lower its
priority to ensure it doesn’t affect other services:

$ nice -n 10 ./backup.sh &

To change the priority of an already running backup process with PID
91011:

$ renice -n 15 -p 91011

Suspending and Resuming Long-Running Compilation

If you start a compilation process that you need to pause:

$ make

Press Ctrl+Z to suspend it:

$ jobs

[1]+ Stopped make

Resume it in the background:

$ bg %1

Automating Process Management with Cron

Schedule a nightly database backup using a cron job. Edit the crontab file:

$ sudo crontab -e

Add the following line to schedule the backup script to run at 2 AM daily:

0 2 * * * /usr/local/bin/backup.sh

Monitoring Processes with ‘ps’ and ‘top’

Regularly check the processes using

$ ps aux | grep apache2

Or use top for a real-time view:

$ top

Tracing a Problematic Process

If the web server is misbehaving, trace its system calls:

$ sudo strace -p $(pgrep apache2)

Using ‘lsof’ to Check Open Files

If a process is holding onto a file or port, use lsof to list open files:

$ sudo lsof -i :80

This command shows processes listening on port 80.

Sample Workflow: Handling High CPU Usage

Let us say during peak hours, you notice high CPU usage affecting the
performance of AlphaProject’s web server. Given below is how you can
manage this:

Identify the High CPU Process

Use top or htop to identify processes consuming high CPU:

$ top

Look for processes with high %CPU values.

Adjust the Priority

Suppose the high CPU process has PID 2345. Lower its priority to reduce
its CPU consumption:

$ sudo renice 10 -p 2345

Monitor the Process

Keep an eye on the process to see if the situation improves:

$ htop

Terminate If Necessary

If lowering the priority doesn’t help and the process is non-critical,
terminate it:

$ sudo kill 2345

If it doesn’t terminate:

$ sudo kill -9 2345

These above tools primarily and strace ensure that your services run
smoothly, resource usage is optimized, and any misbehaving processes are
quickly handled. When we go further into Linux system administration,
this background knowledge will help with higher-level tasks and
circumstances.

Accessing and using Linux Utilities

Among the many useful tools available to system administrators, Linux
utilities are among the most powerful. From text processing and file
manipulation to network diagnostics and system monitoring, these utilities
do it all.

Role of Utilities

Utilities simplify complex tasks, automate repetitive processes, and
provide critical information about the system. They help in managing
files, monitoring performance, diagnosing issues, and configuring network
settings. By mastering these utilities, you can enhance productivity and
ensure the smooth operation of your projects.

Common Utilities for AlphaProject

For AlphaProject, several utilities are particularly useful. These include:

1. and Directory Management: find

2. Processing: awk

3. Utilities: curl

4. Monitoring: du

5. and Compression: zip

6. Usage and Partition Management: lsblk

We shall explore these utilities and learn how to use them practically for
managing AlphaProject.

File and Directory Management Utilities

‘cp’, ‘mv’, and ‘rm’

These commands are fundamental for managing files and directories.

To copy files:

$ cp /projects/AlphaProject/developers/scripts/init.sh
/projects/AlphaProject/backup/

To move files:

$ mv /projects/AlphaProject/backup/init.sh /projects/AlphaProject/qa/

To remove files:

$ rm /projects/AlphaProject/qa/init.sh

‘find’

The find command is invaluable for locating files based on various
criteria. For example, to find all .sh files in the AlphaProject directory:

$ find /projects/AlphaProject -name "*.sh"

Text Processing Utilities

‘grep’

The grep command searches for patterns within files. To search for the
word "error" in log files:

$ grep "error" /projects/AlphaProject/logs/*.log

‘sed’

The sed (stream editor) command performs basic text transformations on
an input stream. To replace "foo" with "bar" in a file:

$ sed -i 's/foo/bar/g' /projects/AlphaProject/developers/config.txt

‘awk’

The awk command is used for pattern scanning and processing. To print
the second column of a CSV file:

$ awk -F, '{print $2}' /projects/AlphaProject/data.csv

Network Utilities

‘ping’

The ping command checks network connectivity to a host. To ping
google.com:

$ ping google.com

‘traceroute’

The traceroute command traces the path packets take to reach a network
host. To trace the route to google.com:

$ traceroute google.com

‘netstat’

The netstat command displays network connections, routing tables,
interface statistics, and more. To list all active network connections:

$ netstat -tuln

‘curl’

The curl command transfers data from or to a server using various
protocols. To download a file from a URL:

$ curl -O http://gitforgits.com/file.txt

System Monitoring Utilities

‘top’ and ‘htop’

These commands display real-time system statistics.

To use

$ top

For a more user-friendly interface, use

$ htop

‘df’ and ‘du’

These commands display disk space usage.

To check disk space usage:

$ df -h

To check directory size:

$ du -sh /projects/AlphaProject

Archiving and Compression Utilities

‘tar’, ‘gzip’, and ‘zip’

These commands manage file archives and compression.

To create a tarball:

$ tar -czvf /projects/AlphaProject.tar.gz /projects/AlphaProject

To extract a tarball:

$ tar -xzvf /projects/AlphaProject.tar.gz -C /projects/

To compress a file with

$ gzip /projects/AlphaProject/data.txt

To decompress:

$ gunzip /projects/AlphaProject/data.txt.gz

To zip a directory:

$ zip -r /projects/AlphaProject.zip /projects/AlphaProject

Disk Usage and Partition Management Utilities

‘fdisk’ and ‘lsblk’

These commands manage disk partitions and list block devices.

To list partitions:

$ sudo fdisk -l

To display block devices:

$ lsblk

Sample Program: Using Utilities in AlphaProject

We shall apply these utilities to our AlphaProject use-case:

File Backup and Management

Create a backup of the developers directory:

$ cp -r /projects/AlphaProject/developers /projects/AlphaProject/backup/

Log Analysis

Search for errors in log files:

$ grep "error" /projects/AlphaProject/logs/*.log

Configuration Management

Update configuration settings in

$ sed -i 's/old_value/new_value/g'
/projects/AlphaProject/developers/config.txt

Network Diagnostics

Check network connectivity to a remote server:

$ ping server.gitforgits.com

System Monitoring

Monitor system performance using

$ htop

Disk Space Management

Check available disk space:

$ df -h

Archiving Project Data

Create a compressed archive of the project:

$ tar -czvf /projects/AlphaProject_backup.tar.gz /projects/AlphaProject

Downloading Resources

Download a script from a remote server:

$ curl -O http://gitforgits.com/script.sh

Disk Partition Analysis

List disk partitions:

$ sudo fdisk -l

All these above and lsblk allows to manage files, process text, diagnose
network issues, monitor systems, and manage disk space.

Summary

In this chapter, we explored foundational concepts and practical skills
essential for Linux system administration, focusing on our AlphaProject
use-case. We started by understanding Linux Ubuntu, its installation
process, and the GNOME desktop environment, which provided a user-
friendly interface for navigating the system. Navigating the Linux
filesystem was covered extensively, teaching how to use commands like
and pwd to move through directories and manage files. We also delved
into viewing and modifying file permissions using chmod and
understanding symbolic links with and handling hidden files with ls

Basic Linux commands were introduced, including ip and ifconfig for
network configuration, mtr for network diagnostics, and and tcpdump for
various administrative tasks. We learned to monitor processes with and
start and terminate processes using kill and and adjust process priorities
with nice and Additionally, we managed background jobs with bg and
ensuring efficient multitasking.

In the section on package management, we covered the importance of
maintaining up-to-date software using APT. We practiced updating
package lists with apt upgrading software with apt and installing packages
like Git with apt Viewing and deleting packages with dpkg and apt and
finding packages with apt search were also demonstrated.

The chapter included managing system startup and shutdown processes
using and systemctl commands. We automated these tasks with cron and
explored enabling Wake-on-LAN for remote startups. Managing specific
services like Apache and MySQL using systemctl was learned, along with
scheduling service restarts with

Finally, accessing and using Linux utilities such as and lsblk equipped us
with tools for file management, text processing, network diagnostics,
system monitoring, and disk management. This extensive chapter
established a firm groundwork for administering Linux servers and
efficiently managing our AlphaProject.

Chapter II: Managing Linux Systems

Overview

This chapter will explore the fundamentals of Linux system
administration, with an emphasis on the knowledge, abilities, and
resources that are necessary for this role. The first step in making your
Linux environment work for you is to learn how to navigate the system
configuration files. By learning where these files are located, you'll be
able to tweak the system's behavior and performance as needed.

Up next, you'll find out how to utilize systemd, a popular and capable
system and service manager, to control system services. By learning how
to start, stop, enable, and monitor services, you can keep your system
running efficiently and in peak condition. In addition, you will learn the
fundamentals of batch processing, crontab, and at, which are critical for
automating regular operations and maintenance chores.

Another important topic covered in this chapter is monitoring the
performance of the system. You will learn how to use different tools to
monitor disk, memory, and CPU utilization, which will aid in finding and
fixing performance issues. Log files and system logging are also covered,
which are important for troubleshooting and keeping the system healthy.
For a well-rounded understanding of how to operate Linux systems safely
and efficiently, this chapter will also walk you through disk partitioning,
system backup and restoration, and SSH remote administration.

Getting around System Configuration Files

A Linux system's behavior and interactions with hardware and software
are dictated by its system configuration files, which are essential
components of the system. From user permissions and network settings to
service configurations and system security, these files manage it all. A
successful system administrator must be familiar with the format and
location of these files.

Characteristics of System Configuration Files

System configuration files are typically plain text files, making them easy
to read and edit using any text editor like or They are usually stored in
specific directories and are accessible only to users with appropriate
permissions, often requiring superuser access to modify.

Configuration files can be divided into two main types:

Global Configuration Files: These files affect the entire system and are
located in Examples include /etc/passwd for user accounts and /etc/fstab
for filesystem mounts.

Local Configuration Files: These files affect individual users and are
located in user-specific directories like Examples include .bashrc for shell
configuration and .gitconfig for Git settings.

Categories of Configuration Files

Configuration files can be categorized based on the services or
components they manage.

Following are some common categories:

1. Configuration Files:

● Contains user account information.

● Defines groups of users.

● Lists filesystems to be mounted at boot.

● Defines the system's hostname.

● Maps hostnames to IP addresses.

2. Configuration Files:

● /etc/network/interfaces or Network interface configuration.

● DNS resolver configuration.

● /etc/hosts.allow and TCP wrappers configuration for access control.

3. Configuration Files:

● Apache web server configuration.

● MySQL database configuration.

● SSH server configuration.

4. Configuration Files:

● Sudo permissions configuration.

● SELinux configuration.

● Firewall configuration.

5. Configuration Files:

● System-wide Git configuration.

● PHP configuration for Apache.

Customizing Configuration Files

Customizing configuration files allows you to tailor the system and its
services to meet specific needs. Given below is how you can approach
customizing these files:

Editing Configuration Files

To edit a configuration file, you typically need superuser privileges. For
example, to edit the SSH configuration file:

$ sudo nano /etc/ssh/sshd_config

After making changes, save the file and restart the service to apply the
changes:

$ sudo systemctl restart sshd

Backup Configuration Files

Before editing a configuration file, it is wise to create a backup. This
allows you to restore the original settings if something goes wrong:

$ sudo cp /etc/ssh/sshd_config /etc/ssh/sshd_config.bak

Understanding Configuration Syntax

Configuration files have specific syntax rules. For instance, sshd_config
uses keyword-value pairs, while fstab uses a space-separated format.
Incorrect syntax can prevent services from starting or cause errors, so be
sure to understand the format before making changes.

Sample Program: Customizing Configuration Files

We shall walk through some examples relevant to AlphaProject:

Customizing Network Settings

Suppose you need to configure a static IP address for a network interface.
On systems using you would edit the relevant YAML file in

● Open the configuration file:

$ sudo nano /etc/netplan/01-netcfg.yaml

● Add the following configuration for a static IP:

network:

version: 2

ethernets:

eth0:

dhcp4: no

addresses: [192.168.1.100/24]

gateway4: 192.168.1.1

nameservers:

addresses: [8.8.8.8, 8.8.4.4]

● Apply the changes with:

$ sudo netplan apply

Configuring SSH

To enhance security, you might want to change the default SSH port and
disable root login.

● Edit the SSH configuration file:

$ sudo nano /etc/ssh/sshd_config

● Change the following lines:

Port 2222

PermitRootLogin no

● Restart the SSH service:

$ sudo systemctl restart sshd

Setting up User Accounts

User accounts are managed in /etc/passwd and To manually add a user,
you might edit these files directly, though using useradd is safer:

$ sudo useradd -m -s /bin/bash newuser

$ sudo passwd newuser

Configuring Apache Web Server

For the AlphaProject, you might need to configure Apache to host the
project’s website.

● Edit the main Apache configuration file:

$ sudo nano /etc/apache2/sites-available/000-default.conf

● Update the DocumentRoot to point to your project’s directory:

DocumentRoot /projects/AlphaProject/public_html

● Enable the site and restart Apache:

$ sudo a2ensite 000-default.conf

$ sudo systemctl restart apache2

Managing Services

Service management often involves editing configuration files specific to
the service. For example, to configure MySQL for AlphaProject,

● edit

$ sudo nano /etc/mysql/my.cnf

● Adjust settings such as the bind-address to allow remote
connections:

bind-address = 0.0.0.0

● Restart the MySQL service:

$ sudo systemctl restart mysql

Configuring User and Group Permissions

The /etc/sudoers file controls sudo access. To allow a new user newuser to
execute all commands, use visudo to edit this file safely:

$ sudo visudo

● Add the following line:

newuser ALL=(ALL) ALL

Setting System Locale

Locale settings can be configured in To change the system language to US
English:

$ sudo nano /etc/default/locale

● Add or modify the following lines:

LANG="en_US.UTF-8"

● Apply the locale changes:

$ sudo update-locale

Automating Configuration Changes

Scripts can automate the process of editing configuration files. For
example, a script to configure network settings might look like this:

#!/bin/bash

cat <> /etc/netplan/01-netcfg.yaml

network:

version: 2

ethernets:

eth0:

dhcp4: no

addresses: [192.168.1.100/24]

gateway4: 192.168.1.1

nameservers:

addresses: [8.8.8.8, 8.8.4.4]

EOL

sudo netplan apply

The ability to diagnose problems, enhance performance, and guarantee
system security is essential for any system manager, and this expertise is
the bedrock of that profession. Your capacity to handle Linux systems
effectively will be enhanced as we move further in this chapter and apply
these skills to increasingly complicated and automated settings.

Managing System Services with ‘systemd’

‘systemd’ Components

systemd is a modern system and service manager for Linux, designed to
provide a robust and efficient way to manage system initialization, service
control, and other critical functions. It has become the default init system
on many Linux distributions, including Ubuntu, replacing older systems
like System V init and Upstart.

To effectively use it is essential to understand its key components and how
they interact:

Unit Files: These are configuration files that describe the state and
behavior of services, sockets, devices, mounts, and more. Each unit file
has a specific type, indicated by its suffix, such as .service for services,
.socket for sockets, and .target for target groups.

systemctl: This is the command-line tool used to interact with It allows
you to start, stop, enable, disable, and monitor services and other units.

journalctl: This tool is used for querying and displaying logs collected by
the logging component of

Targets: Targets are special unit files that group other units together,
providing a way to bring the system to a specific state. For example,

multi-user.target is similar to runlevel 3 in System V init systems,
providing a multi-user, non-graphical environment.

Managing System Services with systemd

systemd simplifies service management by providing consistent
commands and functionality. We shall explore how to use systemd to
manage system services practically, using examples relevant to our
AlphaProject.

Viewing Service Status

To view the status of a specific service, use the systemctl status command
followed by the service name. For instance, to check the status of the
Apache web server:

$ sudo systemctl status apache2

This command displays detailed information about the service, including
whether it is running, its PID, recent log entries, and more.

Starting and Stopping Services

To start a service, use the systemctl start command:

$ sudo systemctl start apache2

To stop a service, use the systemctl stop command:

$ sudo systemctl stop apache2

These commands ensure that the specified service starts or stops
immediately.

Restarting and Reloading Services

If you need to restart a service (stop and then start it again), use the
systemctl restart command:

$ sudo systemctl restart apache2

To reload a service's configuration without stopping it, use the systemctl
reload command:

$ sudo systemctl reload apache2

Reloading is useful when changes have been made to a configuration file,
and you want to apply them without disrupting the service.

Enabling and Disabling Services at Boot

To ensure a service starts automatically at boot, use the systemctl enable
command:

$ sudo systemctl enable apache2

To prevent a service from starting at boot, use the systemctl disable
command:

$ sudo systemctl disable apache2

These commands modify symbolic links in the appropriate directories to
control whether a service is started automatically during the system's boot
process.

Checking All Services

To view all active services, use:

$ systemctl list-units --type=service

For a complete list of all services, whether active or inactive, use:

$ systemctl list-units --type=service --all

Analyzing Boot Performance

systemd can help analyze the system's boot performance using the
systemd-analyze command. To view the overall boot time:

$ systemd-analyze

To get a detailed breakdown of time taken by each service during boot,
use:

$ systemd-analyze blame

These commands help identify any services that are causing slow boot
times.

Managing Dependencies

Services often have dependencies on other services. systemd manages
these dependencies using and Wants= directives in unit files. For example,
to ensure that a web application service starts after the database service,
you would modify the unit file for the web application:

$ sudo nano /etc/systemd/system/webapp.service

Add the following lines:

[Unit]

Description=Web Application

After=mysql.service

[Service]

ExecStart=/usr/bin/webapp

[Install]

WantedBy=multi-user.target

Reload the systemd configuration to apply changes:

$ sudo systemctl daemon-reload

This configuration ensures the web application service starts after the
MySQL service.

Creating Custom Service Units

Creating custom service units allows you to manage custom applications
or scripts. Given below is how to create a custom service for a script used
in AlphaProject:

● Create the Service File:

$ sudo nano /etc/systemd/system/alphaproject-backup.service

● Add Service Configuration:

[Unit]

Description=AlphaProject Backup Service

[Service]

ExecStart=/projects/AlphaProject/scripts/backup.sh

User=backupuser

Group=backupgroup

[Install]

WantedBy=multi-user.target

● Reload systemd Configuration:

$ sudo systemctl daemon-reload

● Start the Service:

$ sudo systemctl start alphaproject-backup

● Enable the Service at Boot:

$ sudo systemctl enable alphaproject-backup

Logging with journalctl

systemd uses journald for logging. You can access logs using To view logs
for a specific service:

$ sudo journalctl -u apache2

● To view the entire system journal:

$ sudo journalctl

● For real-time log updates:

$ sudo journalctl -f

Handling Service Failures

systemd provides mechanisms to handle service failures. For example, to
automatically restart a service on failure, modify the service unit file:

$ sudo nano /etc/systemd/system/apache2.service

● Add the following under the [Service] section:

[Service]

Restart=on-failure

● Reload the configuration and restart the service:

$ sudo systemctl daemon-reload

$ sudo systemctl restart apache2

Sample Program: Using ‘systemd’ to Manage AlphaProject Services

For AlphaProject, suppose you need to manage an Apache web server and
a MySQL database server. Given below is how you can use systemd to
manage these services:

● Check Service Status:

$ sudo systemctl status apache2

$ sudo systemctl status mysql

● Start and Enable Services:

$ sudo systemctl start apache2

$ sudo systemctl enable apache2

$ sudo systemctl start mysql

$ sudo systemctl enable mysql

● Restart Services After Configuration Changes:

$ sudo systemctl restart apache2

$ sudo systemctl restart mysql

● Analyze Boot Performance:

$ systemd-analyze blame

● Monitor Logs:

$ sudo journalctl -u apache2

$ sudo journalctl -u mysql

● Configure Service Dependencies:

Edit the MySQL service unit file to ensure Apache starts after MySQL:

$ sudo nano /etc/systemd/system/apache2.service

[Unit]

Description=Apache Web Server

After=mysql.service

You can automate, monitor, and control services on your Linux system by
learning components like journalctl, systemctl, and unit files. Your web
and database servers will function efficiently, dependencies will be
handled appropriately, and any difficulties will be rapidly recognized and
remedied if you apply these abilities to manage AlphaProject's services.

Using ‘crontab’

In Linux and other Unix-like operating systems, Cron is a tool for
scheduling jobs depending on time. With its help, users can automate
routine tasks and maintenance by setting scripts or commands to execute
at predetermined intervals or times. System administrators can benefit
greatly from Cron if they need to automate the execution of frequent
activities.

Introduction to Cron Utility

The cron utility consists of the cron daemon and a set of configuration
files known as The daemon runs in the background and checks the crontab
files for scheduled tasks, executing them at the specified times. Each user
on the system can have their own and there is also a system-wide crontab
for tasks that require elevated privileges.

Understanding crontab

A crontab file contains a list of cron jobs, each defined by a specific
syntax that specifies when the job should run and what command should
be executed. The basic structure of a crontab entry is as follows:

* * * * * command_to_execute

| | | | |

| | | | +---- Day of the week (0 - 7) (Sunday is both 0 and 7)

| | | +------ Month (1 - 12)

| | +-------- Day of the month (1 - 31)

| +---------- Hour (0 - 23)

+------------ Minute (0 - 59)

Each field can contain specific values, ranges, wildcards or step values for
every second unit).

To edit a user's you use the crontab -e command. This command opens the
crontab file in the default text editor. To view the current use crontab and
to remove the current use crontab

Sample Program: Using crontab in AlphaProject

We shall explore how to use crontab to automate various tasks for the
AlphaProject. We'll set up jobs to perform regular backups, clean up
temporary files, monitor system health, and more.

Setting up a Backup Job

Suppose you want to back up the AlphaProject directory to an external
drive every night at midnight. First, create a backup script:

$ sudo nano /projects/AlphaProject/scripts/backup.sh

Add the following lines to the script:

#!/bin/bash

tar -czf /backup/AlphaProject_$(date +\%F).tar.gz /projects/AlphaProject

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/backup.sh

Now, schedule this script to run at midnight every day using

$ sudo crontab -e

Add the following line to the crontab file:

0 0 * * * /projects/AlphaProject/scripts/backup.sh

This cron job runs the backup script every day at midnight.

Cleaning up Temporary Files

To prevent disk space issues, you might want to delete temporary files
older than a week from the tmp directory weekly. Create a cleanup script:

$ sudo nano /projects/AlphaProject/scripts/cleanup.sh

Add the following lines:

#!/bin/bash

find /projects/AlphaProject/tmp -type f -mtime +7 -exec rm {} \;

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/cleanup.sh

Schedule this script to run every Sunday at 2 AM:

$ sudo crontab -e

Add the following line:

0 2 * * 0 /projects/AlphaProject/scripts/cleanup.sh

Monitoring System Health

To monitor system health, you might want to log CPU and memory usage
every hour. Create a monitoring script:

$ sudo nano /projects/AlphaProject/scripts/monitor.sh

Add the following lines:

#!/bin/bash

echo "$(date): CPU and Memory Usage" >>
/projects/AlphaProject/logs/system_health.log

top -b -n1 | grep "Cpu(s)" >>
/projects/AlphaProject/logs/system_health.log

free -m >> /projects/AlphaProject/logs/system_health.log

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/monitor.sh

Schedule this script to run every hour:

$ sudo crontab -e

Add the following line:

0 * * * * /projects/AlphaProject/scripts/monitor.sh

Sending Email Notifications

You may want to receive an email notification if a critical service fails.
First, ensure the mail command is available by installing the necessary
package:

$ sudo apt install mailutils

Create a script to check the status of the Apache service and send an email
if it is not running:

$ sudo nano /projects/AlphaProject/scripts/check_apache.sh

Add the following lines:

#!/bin/bash

if ! systemctl is-active --quiet apache2; then

echo "Apache service is down on $(hostname)" | mail -s "Apache Service
Alert" admin@gitforgits.com

fi

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/check_apache.sh

Schedule this script to run every 15 minutes:

$ sudo crontab -e

Add the following line:

*/15 * * * * /projects/AlphaProject/scripts/check_apache.sh

Rotating Logs

Log files can grow quickly, consuming disk space. To rotate logs for the
AlphaProject, create a log rotation script:

$ sudo nano /projects/AlphaProject/scripts/rotate_logs.sh

Add the following lines:

#!/bin/bash

logrotate /projects/AlphaProject/config/logrotate.conf

Create the logrotate configuration file:

$ sudo nano /projects/AlphaProject/config/logrotate.conf

Add the following configuration:

/projects/AlphaProject/logs/*.log {

daily

rotate 7

compress

missingok

notifempty

create 0640 root root

}

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/rotate_logs.sh

Schedule the log rotation script to run daily at 3 AM:

$ sudo crontab -e

Add the following line:

0 3 * * * /projects/AlphaProject/scripts/rotate_logs.sh

Custom Scheduling with Step Values

To run a script every 10 minutes, use step values in the crontab entry. For
example, to check disk usage frequently:

$ sudo nano /projects/AlphaProject/scripts/check_disk.sh

Add the following lines:

#!/bin/bash

df -h > /projects/AlphaProject/logs/disk_usage.log

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/check_disk.sh

Schedule the script to run every 10 minutes:

$ sudo crontab -e

Add the following line:

*/10 * * * * /projects/AlphaProject/scripts/check_disk.sh

Viewing and Managing Cron Jobs

To view the list of scheduled cron jobs for the current user:

$ crontab -l

To remove all cron jobs for the current user:

$ crontab -r

If you need to edit the crontab for a different user (as the superuser):

$ sudo crontab -e -u username

To view the crontab for a different user:

$ sudo crontab -l -u username

One useful tool in Linux system administration is the ability to schedule
and automate operations using crontab. You can automate a lot of tasks for
AlphaProject, like backups, system monitoring, and log rotation, by
learning how crontab entries are structured and using the cron program. In
addition to assisting with system health and performance maintenance,
these abilities automate routine maintenance, freeing up personnel for
more important duties.

Scheduling Tasks with ‘at’ and ‘batch’

In addition to Linux provides at and batch utilities for scheduling tasks.
Unlike which is used for recurring tasks, at and batch are designed for
one-time task scheduling. These commands offer a flexible way to execute
jobs at a specific time or when system load permits, making them valuable
tools for system administrators.

Introduction to ‘at’ and ‘batch’

The at command is used to schedule a one-time task to run at a specific
time in the future. The time can be specified in various formats, such as
absolute time (e.g., 2:30 relative time (e.g., now + 1 or specific dates (e.g.,
midnight The at daemon must be running for at jobs to be executed.

The batch command, on the other hand, schedules tasks to run when the
system load average drops below a certain threshold, typically set to 1.5.
This makes batch useful for executing non-urgent tasks during periods of
low system activity, helping to maintain optimal performance.

Using at and batch in AlphaProject

The usage of at and batch to automate AlphaProject processes is
something we should check out. We will plan out when to run scripts for
routine maintenance, create reports, and create backups.

Scheduling One-Time Tasks with at

To use first ensure that the at package is installed and the atd daemon is
running:

$ sudo apt install at

$ sudo systemctl start atd

$ sudo systemctl enable atd

Scheduling a Task

To schedule a task using enter the command followed by the desired
execution time. For example, to schedule a script to run at 10:00 PM:

$ at 10:00 PM

After entering the command, you will be prompted to enter the
command(s) you want to execute at the specified time. For example:

at> /projects/AlphaProject/scripts/maintenance.sh

at> # Press Ctrl+D to save and exit

This schedules the maintenance.sh script to run at 10:00 PM.

Viewing Scheduled at Jobs

To view the list of scheduled at jobs, use the atq command:

$ atq

The output will display the job ID, execution time, and the user who
scheduled the job.

Removing a Scheduled at Job

To remove a scheduled job, use the atrm command followed by the job
ID:

$ atrm

For example, to remove job ID 3:

$ atrm 3

Scheduling Tasks with Relative Time

You can also schedule tasks using relative time. For example, to run a
script one hour from now:

$ at now + 1 hour

Enter the command to execute when prompted:

at> /projects/AlphaProject/scripts/report.sh

at>

This schedules the report.sh script to run one hour from the current time.

Scheduling Tasks with Specific Dates

To schedule a task at a specific date and time, use the date format. For
example, to run a script at midnight tomorrow:

$ at midnight tomorrow

Enter the command to execute when prompted:

at> /projects/AlphaProject/scripts/backup.sh

at>

This schedules the backup.sh script to run at midnight the next day.

Using batch for System Load-Dependent Tasks

The batch command is useful for running tasks when the system load is
low. This is particularly helpful for non-urgent tasks that should not
interfere with system performance.

Scheduling a Task with batch

To schedule a task using simply enter the batch command and then specify
the command(s) to execute:

$ batch

Enter the command(s) to execute when prompted:

batch> /projects/AlphaProject/scripts/system_cleanup.sh

batch>

This schedules the system_cleanup.sh script to run when the system load
average drops below 1.5.

Viewing Scheduled batch Jobs

To view the list of scheduled batch jobs, use the same atq command:

$ atq

Batch jobs will be listed along with at jobs, distinguished by their queue
identifiers.

Combining at and batch with Other Utilities

For complex workflows, you can combine at and batch with other utilities.
For example, you might want to send an email notification after a task
completes. Create a script that performs a task and sends an email:

$ sudo nano /projects/AlphaProject/scripts/backup_and_notify.sh

Add the following lines:

#!/bin/bash

tar -czf /backup/AlphaProject_$(date +\%F).tar.gz /projects/AlphaProject

echo "Backup completed on $(date)" | mail -s "Backup Notification"
admin@gitforgits.com

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/backup_and_notify.sh

Schedule the script to run at a specific time using

$ at 2:00 AM

Enter the command to execute when prompted:

at> /projects/AlphaProject/scripts/backup_and_notify.sh

at>

This schedules the backup_and_notify.sh script to run at 2:00 AM,
perform the backup, and send an email notification.

Automating System Health Checks

You can also use at to automate system health checks. Create a script that
checks system health and logs the results:

$ sudo nano /projects/AlphaProject/scripts/system_health_check.sh

Add the following lines:

#!/bin/bash

echo "$(date): System Health Check" >>
/projects/AlphaProject/logs/system_health.log

top -b -n1 | grep "Cpu(s)" >>
/projects/AlphaProject/logs/system_health.log

df -h >> /projects/AlphaProject/logs/system_health.log

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/system_health_check.sh

Schedule the script to run at a specific time using

$ at 6:00 AM

Enter the command to execute when prompted:

at> /projects/AlphaProject/scripts/system_health_check.sh

at>

This schedules the system_health_check.sh script to run at 6:00 AM and
log system health information.

Managing and Viewing Logs

Use journalctl to view logs related to at and batch jobs. For example, to
view logs for

$ sudo journalctl -u atd

This command displays log entries for the atd service, helping you
troubleshoot any issues with scheduled tasks.

The at and batch commands offer versatile alternatives for organizing
tasks that occur only once or depend on the system load. You can
automate a lot of things for AlphaProject by learning and using these
commands. You can run maintenance scripts, generate reports, back up
your data, and check the system's health. You have a full range of options
for automating system administration chores with these tools, which
complement cron's recurring job scheduling features.

Monitoring System Performance

The effectiveness and efficiency of your Linux systems depend on your
ability to monitor their performance. Finding slow spots, fixing problems,
and keeping the system running smoothly are all benefits of good
performance monitoring. Important metrics to track include processing
power, memory, disk I/O, network traffic, and system health in general.

Key Metrics to Monitor

CPU Usage: High CPU usage can indicate processes that are consuming
excessive resources, potentially impacting system performance.

Memory Usage: Monitoring memory usage helps in understanding how
the system’s RAM is being utilized and identifying potential memory
leaks.

Disk I/O: Disk read/write operations can be a significant performance
bottleneck, especially in I/O-intensive applications.

Network Activity: Monitoring network traffic is essential to ensure that
the network bandwidth is sufficient and that there are no unexpected
spikes in usage.

System Load: The load average provides a snapshot of the system’s
workload over time, helping to gauge overall system performance.

System Performance Monitoring Tools

Various tools are available for monitoring different aspects of system
performance. We shall explore these tools and how to use them practically
for AlphaProject.

‘top’

The top command provides a dynamic, real-time view of system processes
and resource usage. It displays information such as CPU usage, memory
usage, and load averages.

To use simply type:

$ top

This command opens an interactive interface where you can see which
processes are consuming the most resources. Press q to exit.

‘vnstat’

vnstat is a network traffic monitor that tracks and logs network bandwidth
usage. To install

$ sudo apt install vnstat

To initialize the database for a specific interface (e.g.,

$ sudo vnstat -u -i eth0

$ sudo systemctl start vnstat

$ sudo systemctl enable vnstat

To view network statistics:

$ vnstat

This command displays the network traffic statistics for the specified
interface.

‘nagios’

Nagios is a powerful monitoring system that can track the status of
network services, host resources, and other network elements. To set up
follow these steps:

First, install Nagios and its plugins:

$ sudo apt install nagios3 nagios-plugins

Start the Nagios service:

$ sudo systemctl start nagios3

$ sudo systemctl enable nagios3

To access the Nagios web interface, navigate to http:///nagios3 in a web
browser. Use the default credentials to log in. From the web interface, you
can configure various services and hosts to be monitored.

‘iftop’

iftop is a real-time network bandwidth monitoring tool. It shows a list of
network connections from/to your system and their data transfer rates.

To install

$ sudo apt install iftop

Run iftop with:

$ sudo iftop

This command opens an interactive interface displaying real-time
bandwidth usage. Press q to exit.

‘psacct’

psacct (Process Accounting) tracks and reports on the resource usage of
individual processes. To install

$ sudo apt install acct

Start the accounting service:

$ sudo systemctl start acct

$ sudo systemctl enable acct

To display the resource usage of all commands executed by users:

$ sa

To display a summary of commands executed by a specific user:

$ sa -u username

To view the details of individual commands executed:

$ ac -d

‘iostat’

iostat is part of the sysstat package and provides statistics on CPU and I/O
usage. To install

$ sudo apt install sysstat

To display CPU and I/O statistics:

$ iostat

This command provides a report on CPU utilization and I/O statistics for
devices.

‘netstat’

netstat displays network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships.

To display all active connections and listening ports:

$ netstat -tuln

To view network statistics:

$ netstat -s

To continuously monitor network connections, use:

$ watch netstat -tuln

Sample Program: Monitoring Tools in AlphaProject

We shall apply these monitoring tools to manage and monitor the
AlphaProject system effectively.

Monitoring CPU and Memory Usage

Using top to monitor CPU and memory usage in real-time:

$ top

This helps identify processes that are consuming excessive resources. For
a more user-friendly interface, you can use

$ sudo apt install htop

$ htop

htop provides an interactive interface for monitoring system performance.

Tracking Network Traffic

Using vnstat to monitor network traffic on the eth0 interface:

$ vnstat -i eth0

To get a detailed report:

$ vnstat -d

This command displays daily network traffic statistics.

Comprehensive System Monitoring with Nagios

Configure Nagios to monitor critical services like Apache and MySQL for
AlphaProject. Edit the Nagios configuration file to add these services:

$ sudo nano /etc/nagios3/conf.d/localhost_nagios2.cfg

Add checks for Apache and MySQL:

define service {

use generic-service

host_name localhost

service_description HTTP

check_command check_http

}

define service {

use generic-service

host_name localhost

service_description MySQL

check_command check_mysql

}

Restart the Nagios service to apply changes:

$ sudo systemctl restart nagios3

Access the Nagios web interface to view the status of these services.

Real-Time Network Monitoring with iftop

Use iftop to monitor real-time bandwidth usage:

$ sudo iftop -i eth0

This command displays network connections and their data transfer rates.

Detailed Process Accounting with psacct

Using psacct to track resource usage of processes:

$ sa

To view the resource usage summary for a specific user:

$ sa -u username

This helps in understanding which users are consuming the most
resources.

Disk and I/O Statistics with iostat

Using iostat to monitor disk and I/O statistics:

$ iostat -x 5

This command provides extended I/O statistics every 5 seconds, helping
to identify I/O bottlenecks.

Network Connections and Statistics with netstat

Using netstat to display network connections:

$ netstat -tuln

To view network statistics:

$ netstat -s

This helps in monitoring active network connections and network traffic.

These tools are great for finding problems, making sure AlphaProject is
running well, and avoiding bottlenecks. The more you use these
monitoring tools, the more you'll be able to control and maintain your
systems, making sure they function properly and efficiently.

Log Files and System Logging

In Linux, almost everything can be logged, including system events,
application activity, user actions, and network traffic. Effective logging
allows administrators to monitor system health, detect anomalies, and
maintain audit trails.

What Can Be Logged in Linux

Various components generate logs, including:

System Logs: Logs generated by the operating system kernel and system
services.

Application Logs: Logs generated by applications and services such as
Apache, MySQL, and others.

Security Logs: Logs related to authentication, user actions, and security
events.

4. Logs: Logs related to network activity and traffic.

5. Logs: Logs related to hardware events and performance.

Logging in Linux is achieved through various mechanisms, primarily
using the syslog protocol. The syslog protocol is widely used for

forwarding log messages in an IP network. Linux systems use syslog
daemons like rsyslog or syslog-ng to handle logging.

Understanding Syslogs

Syslogs are a standard for message logging. They provide a centralized
way to collect and manage logs from different sources. Syslogs categorize
messages into facilities and severity levels, which help in organizing and
filtering logs.

● Facilities: Represent different system components, such as etc.

● Severity Levels: Indicate the importance of the log message,
ranging from emerg (emergency) to

Managing Syslogs with rsyslog

rsyslog is a powerful and flexible syslog daemon that extends the
traditional syslog with additional features like reliable transport, filtering,
and log rotation.

Installing and Configuring rsyslog

rsyslog is typically pre-installed on most Linux distributions. If it is not
installed, you can install it using:

$ sudo apt install rsyslog

Ensure the rsyslog service is running:

$ sudo systemctl start rsyslog

$ sudo systemctl enable rsyslog

Understanding the rsyslog Configuration

The main configuration file for rsyslog is located at This file controls the
behavior of the logging system, including where logs are stored and how
they are handled. Additional configuration files are often found in

Basic Configuration Example

Given below is a simple program to understand the rsyslog configuration.
Open the main configuration file:

$ sudo nano /etc/rsyslog.conf

To log all authentication messages to a separate file, add the following
line:

auth.* /var/log/auth.log

This directive tells rsyslog to log all messages from the auth facility
(regardless of severity) to

Customizing System Logs for AlphaProject

For AlphaProject, you might want to log application-specific messages to
a dedicated file. Suppose you have a custom application logging messages
to syslog using the local0 facility. You can direct these logs to a separate
file.

Add the following line to

local0.* /var/log/alphaproject.log

Restart the rsyslog service to apply the changes:

$ sudo systemctl restart rsyslog

Accessing and Analyzing Logs

Logs are typically stored in the /var/log directory. Some common log files
include:

● General system log

● Authentication log

● Kernel log

● Apache web server logs

● MySQL logs

To view log files, you can use commands like and

For example, to view the latest entries in the syslog:

$ tail -f /var/log/syslog

To search for specific entries, use

$ grep "error" /var/log/syslog

Setting up Log Rotation

Log rotation is essential to manage log file sizes and ensure they don’t
consume excessive disk space. logrotate is a tool that automates log
rotation, compression, and removal.

The main configuration file for logrotate is and additional configurations
are in

Given below is an example of configuring log rotation for AlphaProject
logs:

Create a configuration file:

$ sudo nano /etc/logrotate.d/alphaproject

Add the following configuration:

/var/log/alphaproject.log {

daily

rotate 7

compress

missingok

notifempty

create 0640 root root

postrotate

/usr/bin/systemctl reload rsyslog > /dev/null

endscript

}

This configuration rotates the alphaproject.log file daily, keeps seven days
of logs, compresses old logs, and ensures the log file is recreated with the
correct permissions.

Remote Logging

For centralized log management, you might want to forward logs from
multiple systems to a central log server. This is useful for large
deployments like AlphaProject.

To configure remote logging, edit the rsyslog configuration file on the
client systems:

$ sudo nano /etc/rsyslog.conf

Add the following line to forward logs to a remote server:

. @logserver.gitforgits.com:514

On the log server, configure rsyslog to receive logs. Open the
configuration file:

$ sudo nano /etc/rsyslog.conf

Uncomment or add the following lines to enable TCP/UDP reception:

module(load="imtcp")

input(type="imtcp" port="514")

module(load="imudp")

input(type="imudp" port="514")

Restart rsyslog on both the client and server:

$ sudo systemctl restart rsyslog

Monitoring Logs with Logwatch

Logwatch is a log analysis tool that summarizes and reports log entries. To
install

$ sudo apt install logwatch

To generate a report, use:

$ sudo logwatch --detail high --mailto admin@gitforgits.com --range
today

This command generates a detailed log report for today and emails it to

Sample Program: Logging Messages

Custom Application Logging

Suppose AlphaProject has a custom application that logs messages to
syslog using Configure rsyslog to log these messages to a dedicated file:

$ sudo nano /etc/rsyslog.conf

Add:

local0.* /var/log/alphaproject.log

Restart

$ sudo systemctl restart rsyslog

Log Rotation for Application Logs

Ensure the logs for the custom application are rotated to prevent excessive
disk usage:

$ sudo nano /etc/logrotate.d/alphaproject

Add:

/var/log/alphaproject.log {

daily

rotate 7

compress

missingok

notifempty

create 0640 root root

postrotate

/usr/bin/systemctl reload rsyslog > /dev/null

endscript

}

Remote Logging Setup

Configure AlphaProject systems to forward logs to a central server:

On the client systems:

$ sudo nano /etc/rsyslog.conf

Add:

. @logserver.gitforgits.com:514

On the log server:

$ sudo nano /etc/rsyslog.conf

Enable TCP/UDP reception:

module(load="imtcp")

input(type="imtcp" port="514")

module(load="imudp")

input(type="imudp" port="514")

Restart

$ sudo systemctl restart rsyslog

Monitoring Logs with Logwatch:

Set up Logwatch to send daily summaries of log activity:

$ sudo logwatch --detail high --mailto admin@gitforgits.com --range
today

These practices help in detecting issues early, maintaining compliance,
and optimizing system performance, thus ensuring the smooth operation
of your systems.

Backing up and Restoring Systems

‘rsync’

rsync stands for "remote sync" and is commonly used for backups,
mirroring, and as an improved copy command for everyday use. It only
transfers the differences between source and destination, making it highly
efficient. It supports a range of options to control file permissions,
compression, and recursive operations.

Key Features of rsync

● Delta Transfer Algorithm: Transfers only the changed parts of files.

● Compression: Reduces the amount of data sent over the network.

● Preserve Permissions and Ownership: Maintains file permissions,
ownership, and timestamps.

● Versatile: Can be used for local and remote transfers.

● Bandwidth Limiting: Allows controlling the bandwidth used for the
transfer.

Using rsync for AlphaProject

We shall explore how to use rsync to back up and restore the AlphaProject
directory. We will set up a backup routine that copies project files to an
external storage device and demonstrate restoring these files.

Installing rsync

rsync is usually pre-installed on most Linux distributions. If it is not
installed, you can install it using:

$ sudo apt install rsync

Backing up Data with rsync

To back up the AlphaProject directory to an external drive mounted at use
the following command:

$ rsync -avh /projects/AlphaProject /mnt/backup/

We shall break down the options used:

● Archive mode, which preserves permissions, timestamps, symbolic
links, and recursive copy.

● Verbose mode, which displays detailed information during the
transfer.

● Human-readable format, making file sizes easier to read.

This command synchronizes the contents of /projects/AlphaProject to

Scheduling Backups with cron

To automate the backup process, you can schedule it using Edit the
crontab file:

$ sudo crontab -e

Add the following line to schedule a backup every day at 2 AM:

0 2 * * * rsync -avh /projects/AlphaProject /mnt/backup/

Incremental Backups with rsync

For more efficient backups, you can use rsync to create incremental
backups. This means only the changes since the last backup will be

copied. To set up incremental backups, create a backup directory with date
stamps:

$ rsync -avh --link-dest=/mnt/backup/AlphaProject-previous
/projects/AlphaProject /mnt/backup/AlphaProject-$(date +\%F)

In this command:

● Uses hard links to avoid copying unchanged files, pointing to the
previous backup.

You can update the crontab entry to perform this operation daily:

0 2 * * * rsync -avh --link-dest=/mnt/backup/AlphaProject-previous
/projects/AlphaProject /mnt/backup/AlphaProject-$(date +\%F)

Restoring Data with rsync

To restore data from the backup location to the original directory, use:

$ rsync -avh /mnt/backup/AlphaProject-YYYY-MM-DD/
/projects/AlphaProject/

Replace YYYY-MM-DD with the date of the backup you want to restore.

Verifying Backups

After performing backups, it is essential to verify them to ensure data
integrity. You can use the --checksum option with rsync to verify the files:

$ rsync -avh --checksum /projects/AlphaProject /mnt/backup/AlphaProject

This option compares files based on their checksums, ensuring that the
files are identical.

Advanced ‘rsync’ Options

rsync offers several advanced options to customize your backup and
restore processes:

Exclude Files

To exclude specific files or directories from the backup, use the --exclude
option:

$ rsync -avh --exclude 'tmp/' /projects/AlphaProject /mnt/backup/

This excludes the tmp directory from the backup.

Compression

To reduce the amount of data transferred, use the -z option for
compression:

$ rsync -avhz /projects/AlphaProject /mnt/backup/

Bandwidth Limiting

To limit the bandwidth used by use the --bwlimit option:

$ rsync -avh --bwlimit=1000 /projects/AlphaProject /mnt/backup/

This limits the transfer rate to 1000 KB/s.

Sample Program: Complete Backup and Restore Script

You can create a script that handles both backup and restore operations.
Create a script file:

$ sudo nano /projects/AlphaProject/scripts/backup_restore.sh

Add the following lines:

#!/bin/bash

BACKUP_DIR="/mnt/backup"

SOURCE_DIR="/projects/AlphaProject"

DATE=$(date +\%F)

LINK_DEST="$BACKUP_DIR/AlphaProject-previous"

Backup Function

backup() {

echo "Starting backup..."

rsync -avh --link-dest=$LINK_DEST $SOURCE_DIR
$BACKUP_DIR/AlphaProject-$DATE

echo "Backup completed."

}

Restore Function

restore() {

if [-z "$1"]; then

echo "Please provide the backup date (YYYY-MM-DD) to restore."

exit 1

fi

echo "Starting restore from $1..."

rsync -avh $BACKUP_DIR/AlphaProject-$1/ $SOURCE_DIR/

echo "Restore completed."

}

Main Script

case "$1" in

backup)

backup

;

restore)

restore $2

;

*)

echo "Usage: $0 {backup|restore YYYY-MM-DD}"

exit 1

;

esac

Make the script executable:

$ sudo chmod +x /projects/AlphaProject/scripts/backup_restore.sh

To perform a backup, run:

$ /projects/AlphaProject/scripts/backup_restore.sh backup

To restore from a specific backup date, run:

$ /projects/AlphaProject/scripts/backup_restore.sh restore YYYY-MM-
DD

Relying on rsync for backup and restoration operations offers a strong and
effective way to handle data in Linux. You can guarantee the availability
and integrity of your AlphaProject data by setting up frequent backups,
doing incremental backups, and making use of advanced customization
options.

Perform Disk Partitioning

In Linux, disk partitioning can be performed using various tools such as
and There are specific applications and benefits to using each tool. We'll
take a look at these tools and show you how to partition the AlphaProject
system in several ways.

Using ‘fdisk’

fdisk is a command-line utility for managing disk partitions. It supports
MBR (Master Boot Record) and GPT (GUID Partition Table) partitioning
schemes.

Creating a New Partition with fdisk

● List Available Disks:

$ sudo fdisk -l

Identify the disk you want to partition, such as

● Start

$ sudo fdisk /dev/sda

This command opens the fdisk utility for the specified disk.

● Create a New Partition:

○ Type n to create a new partition.

○ Select the partition type (primary or extended). Typically, you
choose p for primary.

Specify the partition number, starting and ending sectors. For simplicity,
you can accept the default values to use the available space.

● Write Changes to Disk:

Type w to write the changes and exit

For example:

$ sudo fdisk /dev/sda

Command (m for help): n

Partition type

p primary (1 primary, 0 extended, 3 free)

e extended (container for logical partitions)

Select (default p): p

Partition number (2-4, default 2): 2

First sector (2048-20971519, default 2048): 4096

Last sector, +sectors or +size{K,M,G,T,P} (4096-20971519, default
20971519): +1G

Command (m for help): w

● Format the Partition:

$ sudo mkfs.ext4 /dev/sda2

This formats the new partition with the ext4 filesystem.

● Mount the Partition:

$ sudo mkdir /mnt/new_partition

$ sudo mount /dev/sda2 /mnt/new_partition

Using ‘parted’

parted is another command-line utility that supports both MBR and GPT
partitioning schemes. It is more powerful and flexible than

Creating a New Partition with parted

● Start

$ sudo parted /dev/sda

This opens the parted utility for the specified disk.

● Set the Partition Table:

(parted) mklabel gpt

This command sets the partition table to GPT.

● Create a New Partition:

(parted) mkpart primary ext4 1MiB 2GiB

This creates a primary partition with the ext4 filesystem starting at 1MiB
and ending at 2GiB.

● Print the Partition Table:

(parted) print

This command displays the partition layout.

● Quit

(parted) quit

● Format the Partition:

$ sudo mkfs.ext4 /dev/sda1

● Mount the Partition:

$ sudo mkdir /mnt/new_partition

$ sudo mount /dev/sda1 /mnt/new_partition

Using ‘gparted’

gparted is a graphical user interface (GUI) tool for managing disk
partitions. It is useful for users who prefer a visual approach.

Creating a New Partition with gparted

● Install

$ sudo apt install gparted

● Launch

$ sudo gparted

This command opens the gparted GUI.

● Select the Disk:

Use the dropdown menu in the top-right corner to select the disk you want
to partition, such as

● Create a New Partition:

○ Click on the unallocated space.

○ Click the New button.

○ Set the partition size, filesystem type (e.g., ext4), and other options.

○ Click Add to create the partition.

○ Apply Changes:

Click the Apply button (green checkmark) to write the changes to the disk.

● Mount the Partition:

$ sudo mkdir /mnt/new_partition

$ sudo mount /dev/sda1 /mnt/new_partition

Creating a Swap Partition

A swap partition is used for extending the system's physical memory by
using disk space.

● Using fdisk to Create a Swap Partition:

$ sudo fdisk /dev/sda

Command (m for help): n

Partition type

p primary (1 primary, 0 extended, 3 free)

e extended (container for logical partitions)

Select (default p): p

Partition number (2-4, default 2): 3

First sector (2048-20971519, default 2048): 20971520

Last sector, +sectors or +size{K,M,G,T,P} (20971520-41943039, default
41943039): +1G

Command (m for help): t

Partition number (1-4, default 4): 3

Hex code (type L to list all codes): 82

Changed type of partition 'Linux' to 'Linux swap'.

Command (m for help): w

● Format and Enable Swap:

$ sudo mkswap /dev/sda3

$ sudo swapon /dev/sda3

● Add Swap to

$ sudo nano /etc/fstab

● Add the following line:

/dev/sda3 none swap sw 0 0

Resizing Partitions with parted

You may need to resize partitions to allocate more space for a specific
partition.

● Resize a Partition with

$ sudo parted /dev/sda

(parted) resizepart 1 3GiB

● Resize Filesystem:

$ sudo resize2fs /dev/sda1

Creating Logical Volumes with LVM

Logical Volume Manager (LVM) allows flexible disk management.

● Install LVM Tools:

$ sudo apt install lvm2

● Create Physical Volume:

$ sudo pvcreate /dev/sda2

● Create Volume Group:

$ sudo vgcreate vg_alpha /dev/sda2

● Create Logical Volume:

$ sudo lvcreate -L 1G -n lv_alpha vg_alpha

● Format and Mount Logical Volume:

$ sudo mkfs.ext4 /dev/vg_alpha/lv_alpha

$ sudo mkdir /mnt/lv_alpha

$ sudo mount /dev/vg_alpha/lv_alpha /mnt/lv_alpha

With a good grasp of these tools, from command-line flexibility to
graphical simplicity, you can efficiently manage partitions for
AlphaProject, including creating, resizing, and setting up swap space, as
well as advanced techniques like LVM.

Using SSH for Remote Management

When working with distant computers over an insecure network, it is
important to use a protocol like Secure Shell (SSH). Secure Shell (SSH) is
an essential tool for system administrators since it allows for encrypted
communication sessions. It enables safe remote login, file transfer, and
command execution.

Setting up SSH

To use SSH, you need an SSH server running on the remote machine and
an SSH client on the local machine. Most Linux distributions come with
OpenSSH installed by default. If it is not installed, you can install it using
the following commands.

Installing SSH Server

On the remote machine:

$ sudo apt install openssh-server

Start and enable the SSH server:

$ sudo systemctl start ssh

$ sudo systemctl enable ssh

Installing SSH Client

On the local machine:

$ sudo apt install openssh-client

Connecting to a Remote System

To connect to a remote system, you need the IP address or hostname of the
remote machine and the login credentials. The basic syntax of the SSH
command is:

$ ssh username@hostname

For example, to connect to a remote server with IP address 192.168.1.100
and username

$ ssh user@192.168.1.100

Key-Based Authentication

Key-based authentication is more secure than password-based
authentication. It uses a pair of cryptographic keys: a private key stored on
your local machine and a public key stored on the remote machine.

Generating SSH Keys

On the local machine:

$ ssh-keygen -t rsa -b 4096 -C "your_email@gitforgits.com"

This command generates a public-private key pair. By default, the keys
are stored in ~/.ssh/id_rsa (private key) and ~/.ssh/id_rsa.pub (public key).

Copying the Public Key to the Remote Machine

Use ssh-copy-id to copy the public key to the remote machine:

$ ssh-copy-id user@192.168.1.100

You will be prompted to enter the remote user’s password. After the key is
copied, you can log in without a password.

Manually Adding the Public Key

Alternatively, you can manually add the public key to the
~/.ssh/authorized_keys file on the remote machine:

$ cat ~/.ssh/id_rsa.pub | ssh user@192.168.1.100 'cat >>
~/.ssh/authorized_keys'

SSH Config File

You can simplify SSH connections using the SSH config file located at
This file allows you to create shortcuts for your SSH connections.

Creating an SSH Config File

Open the SSH config file:

$ nano ~/.ssh/config

Add the following configuration:

Host alpha

HostName 192.168.1.100

User user

IdentityFile ~/.ssh/id_rsa

Now you can connect to the remote server using the shortcut:

$ ssh alpha

Port Forwarding

SSH allows port forwarding, which can be used to securely tunnel
network connections. There are two types of port forwarding: local and
remote.

Local Port Forwarding

Local port forwarding forwards traffic from a local port to a remote server.
For example, to forward local port 8080 to gitforgits.com on port

$ ssh -L 8080:gitforgits.com:80 user@192.168.1.100

Access http://localhost:8080 on your local machine to reach

Remote Port Forwarding

Remote port forwarding forwards traffic from a remote port to a local
server. For example, to forward remote port 9090 on the remote server to
local port

$ ssh -R 9090:localhost:3000 user@192.168.1.100

Access http://remote-server:9090 to reach http://localhost:3000 on your
local machine.

Copying Files using scp and rsync

SSH allows secure file transfer between local and remote systems using
scp and

Using ‘scp’

The scp (secure copy) command copies files between local and remote
systems. To copy a file from your local machine to the remote machine:

$ scp localfile.txt user@192.168.1.100:/remote/directory/

To copy a file from the remote machine to your local machine:

$ scp user@192.168.1.100:/remote/file.txt /local/directory/

Using ‘rsync’

rsync is a powerful tool for synchronizing files between local and remote
systems. To sync a local directory to a remote directory:

$ rsync -avh /local/directory/ user@192.168.1.100:/remote/directory/

To sync a remote directory to a local directory:

$ rsync -avh user@192.168.1.100:/remote/directory/ /local/directory/

Executing Commands on a Remote System

You can execute commands on a remote system directly from your local
machine using SSH. For example, to check the disk usage on the remote
machine:

$ ssh user@192.168.1.100 'df -h'

To update the package list on the remote machine:

$ ssh user@192.168.1.100 'sudo apt update'

Using tmux with SSH

tmux is a terminal multiplexer that allows you to manage multiple
terminal sessions within a single window. It is particularly useful for
maintaining long-running processes over SSH sessions.

● Installing

$ sudo apt install tmux

● Starting a tmux Session:

$ tmux new -s session_name

Within the tmux session, you can start multiple windows and panes.

● Detaching and Reattaching to tmux Sessions:

To detach from a tmux session:

d

To reattach to the session:

$ tmux attach -t session_name

Managing Multiple Servers with SSH

You can use tools like cssh (Cluster SSH) or tmux to manage multiple
servers simultaneously.

Using ‘cssh’

cssh opens an SSH session to multiple servers and allows you to send
commands to all sessions simultaneously.

Using tmux with Multiple SSH Sessions

You can open multiple panes in each connected to a different server. To
split the current pane horizontally:

"

To split the current pane vertically:

%

To navigate between panes:

arrow_key

Monitoring Remote Systems with top and htop

You can use top and htop to monitor system performance on remote
systems over SSH.

Using ‘top’

$ ssh user@192.168.1.100 'top'

Using ‘htop’

First, install htop on the remote system:

$ sudo apt install htop

Then, run htop over SSH:

$ ssh user@192.168.1.100 'htop'

Through the utilization of Secure Shell (SSH) for remote management, it
is possible to manage, monitor, and maintain remote systems in a secure
and efficient manner, hence guaranteeing the highest possible level of
performance and dependability for Alpha project.

Summary

We explored the fundamentals of Linux system administration in this
chapter, with an emphasis on the practical skills necessary for good
system management. The first step was to familiarize ourselves with
system configuration files, their features, and how to make changes to
them. To better control system services, we dove into systemd, learning its
parts and how to use its commands. The use of systemctl for initiating,
terminating, enabling, and monitoring services was part of this. The
crontab utility was the next thing we looked at, and we learned how to
automate backups, schedule recurring jobs, and do system maintenance
with it. After that, we used the at command to schedule one-time tasks and
the batch command for jobs that depend on the current load.

Top, vnstat, nagios, iftop, psacct, iostat, and netstat are just a few of the
tools for system performance monitoring that we covered in this chapter.
You might learn about the system's memory, CPU, disk I/O, network
activity, and general health with these tools. We also went over system
logging, including what information may be recorded and how to set up
rsyslog to collect all of that data in one place. This involved making
changes to the log files, use logrotate to set up log rotation, then analyzing
logs with logwatch.

We looked at rsync as a backup and restore tool, automated and
incremental backup configuration, and data integrity assurance.
Furthermore, we used disk partitioning programs such as fdisk, parted,
and gparted to create and resize partitions, as well as set up logical

volumes with LVM. Our further understanding of Secure Shell (SSH) for
remote administration concluded with topics such as key-based
authentication, SSH configuration files, port forwarding, scp and rsync
secure file transfers, and the use of tmux to handle numerous SSH
sessions. These all-encompassing abilities are vital for keeping Linux
systems running smoothly and efficiently in every setting.

Chapter III: Upgrading, Installing, and Configuring Software and

Hardware

Overview

Upgrading, installing, and configuring Linux hardware and software are
the primary topics covered in this chapter. This chapter will teach you how
to use apt, the main package management tool for Debian-based
distributions, and yum, the primary package management tool for Red
Hat-based distributions. These tools will make program installation,
updating, and removal effortless. We will also go over the basics of
dependency management, which is making sure that your apps can't
function properly without certain libraries and components.

This chapter also covers another crucial part, which is configuring the
system hardware. You'll be able to manage different hardware
components, update the kernel, and work with device drivers. You will be
able to optimize hardware performance and resolve hardware-related
problems with this information. For software package acquisition and
update management, we will also cover repository setup and management.

In addition, the concepts of virtualization and containerization will be
introduced in this chapter. You will get the hang of using VirtualBox to set
up and manage virtual machines, which will allow you to install and run
various OSes on a single physical computer.

Package Management with ‘apt’

In order to successfully install, update, and delete software packages,
package management is a vital part of Linux system maintenance. Two of
the most widely used package managers in the Linux world are apt
(Advanced Package Tool) for Debian-based distributions like Ubuntu, and
yum (Yellowdog Updater Modified) for Red Hat-based distributions like
CentOS and Fedora.

Introduction to ‘apt’ and ‘yum’

‘apt’ (Advanced Package Tool)

● Debian-Based Distributions: Used primarily in Debian, Ubuntu,
and their derivatives.

Functionality: Simplifies the process of managing software by handling
dependencies, fetching packages from repositories, and keeping the
system up-to-date.

● Common Commands:

‘yum’ (Yellowdog Updater Modified)

● Red Hat-Based Distributions: Used in Red Hat Enterprise Linux,
CentOS, Fedora, and their derivatives.

● Functionality: Manages RPM packages, resolves dependencies,
and handles package installations and updates.

● Common Commands:

Installing ‘apt’ in Our Existing Environment

Assuming our environment is Ubuntu-based (since apt is the default
package manager here), apt should already be installed. If it isn't, you can
install it by ensuring your system has

$ sudo apt update

$ sudo apt install apt

This command updates the package list and installs the apt package
manager if it is not already present.

Using ‘apt’ to Manage Packages

We shall explore how to use apt for various package management tasks in
our AlphaProject environment.

Updating the Package List

Before installing or updating packages, it is essential to refresh the
package list to ensure you’re accessing the latest versions:

$ sudo apt update

This command fetches the latest package information from all configured
repositories.

Upgrading Packages

To upgrade all installed packages to their latest versions, use:

$ sudo apt upgrade

For a more comprehensive upgrade that also removes obsolete packages,
use:

$ sudo apt full-upgrade

Installing Packages

To install a new package, use the apt install command followed by the
package name. For example, to install Git:

$ sudo apt install git

apt will handle downloading and installing Git along with any necessary
dependencies.

Removing Packages

To remove a package that is no longer needed, use the apt remove
command:

$ sudo apt remove git

If you want to remove a package along with its configuration files, use:

$ sudo apt purge git

To clean up unnecessary dependencies, use:

$ sudo apt autoremove

Searching for Packages

If you’re unsure about the exact name of a package, you can search for it
using apt

$ apt search git

This command lists all packages related to the keyword

Viewing Package Information

To view detailed information about a specific package, use apt show
followed by the package name:

$ apt show git

This command provides details about the package, including its
description, version, dependencies, and more.

Holding and Unholding Packages

To prevent a package from being updated, you can hold it using:

$ sudo apt-mark hold git

To allow the package to be updated again, use:

$ sudo apt-mark unhold git

Adding and Removing Repositories

Repositories are sources where apt fetches packages. Sometimes, you may
need to add third-party repositories to access specific software.

To add a new repository, use For example, to add a PPA (Personal Package
Archive) for the latest Node.js:

$ sudo add-apt-repository ppa:chris-lea/node.js

$ sudo apt update

This command adds the repository and updates the package list to include
the new software.

To remove a repository, you need to edit the sources list:

$ sudo nano /etc/apt/sources.list

Find the repository you want to remove and delete the corresponding line.

Sample Workflow: Managing Packages for AlphaProject

Installing a Web Server and Database

● Install Apache Web Server:

$ sudo apt install apache2

● Verify the installation:

$ systemctl status apache2

● Install MySQL Database Server:

$ sudo apt install mysql-server

● Secure the MySQL installation:

$ sudo mysql_secure_installation

● Install PHP:

$ sudo apt install php libapache2-mod-php php-mysql

● Verify PHP Installation:

Create a test PHP file:

$ sudo nano /var/www/html/info.php

Add the following line:

phpinfo(); ?>

Access http://your_server_ip/info.php in a web browser to verify PHP.

Setting up a Development Environment

● Install Git:

$ sudo apt install git

● Install Node.js and npm:

$ sudo apt install nodejs npm

● Install Docker:

$ sudo apt install docker.io

● Start and enable Docker:

$ sudo systemctl start docker

$ sudo systemctl enable docker

● Install Visual Studio Code:

Add the Microsoft repository:

$ sudo apt update

$ sudo apt install software-properties-common apt-transport-https wget

$ wget -q https://packages.microsoft.com/keys/microsoft.asc -O- | sudo
apt-key add -

$ sudo add-apt-repository "deb [arch=amd64]
https://packages.microsoft.com/repos/vscode stable main"

● Install Visual Studio Code:

$ sudo apt install code

Using this procedure, you can be confident that your web server, database
server, development environment, and containerization platform are all up
and running smoothly with the help of A well-versed user of apt can
efficiently manage software packages, keeping their Linux system secure,
up-to-date, and AlphaProject-ready.

Managing Dependencies

When dealing with several libraries, packages, and shared files in Linux,
dependency management becomes quite important for keeping everything
running smoothly. To ensure proper operation, software often requires
supplementary packages or libraries, which are known as dependencies.
To avoid conflicts and mistakes, it is important to use effective
dependency management to make sure all the necessary components are
present and up-to-date.

Finding Dependencies

To manage dependencies, you first need to identify what dependencies a
package has. This can be done using apt commands on Debian-based
systems.

Finding Dependencies with ‘apt’

To list the dependencies of a package, use the apt-cache depends
command:

$ apt-cache depends git

This command shows all the packages that git depends on.

Finding Reverse Dependencies

To see what packages depend on a specific package (reverse
dependencies), use:

$ apt-cache rdepends git

This command lists all the packages that depend on

Updating Dependencies

Keeping dependencies up-to-date is essential for security and
functionality. To update all packages, including their dependencies, use
the apt upgrade command.

$ sudo apt update

$ sudo apt upgrade

This ensures that all installed packages and their dependencies are updated
to the latest versions.

Modifying Dependencies

Sometimes, you may need to manually modify or configure dependencies.
This could involve installing specific versions of a package, changing
configuration files, or setting environment variables.

Installing Specific Versions

To install a specific version of a package, use the apt install command
with the version number:

$ sudo apt install package=version

For example:

$ sudo apt install nginx=1.18.0-0ubuntu1

This installs the specified version of

Editing Configuration Files

Configuration files for dependencies are usually located in the /etc
directory. For example, to edit the configuration file for

$ sudo nano /etc/nginx/nginx.conf

Make the necessary changes and save the file.

Setting Environment Variables

Sometimes dependencies require specific environment variables. To set an
environment variable, use the export command:

$ export VARIABLE_NAME=value

For example:

$ export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

Add this line to ~/.bashrc or /etc/environment to make it persistent across
sessions.

Fixing Dependency Issues

Dependency issues can occur due to missing, broken, or conflicting
packages. apt provides tools to diagnose and fix these issues.

Fixing Broken Packages

To fix broken dependencies, use the --fix-broken option:

$ sudo apt --fix-broken install

This command attempts to correct any broken dependencies on your
system.

Resolving Conflicts

If there are conflicts between packages, you might need to remove or
forcefully install specific packages. Use the dpkg command to forcefully
remove a problematic package:

$ sudo dpkg --remove --force-remove-reinstreq package-name

Then, use apt to install the correct package:

$ sudo apt install package-name

Checking for Missing Dependencies

To check for missing dependencies, use the check command:

$ sudo apt check

This command checks the package database for consistency and reports
any issues.

Changing Permissions of Users/Applications for Libraries and Shared
Files

Managing permissions ensures that users and applications have the
appropriate access to libraries and shared files.

Changing File Permissions

Use the chmod command to change file permissions. For example, to give
read and write permissions to the owner and group for a file:

$ sudo chmod 660 /path/to/file

Changing Ownership

Use the chown command to change the ownership of files and directories.
For example, to change the owner to user and the group to

$ sudo chown user:group /path/to/file

Setting Permissions for Libraries

Libraries are typically stored in /usr/lib or Ensure that the necessary
permissions are set so that applications can access these libraries. For
example:

$ sudo chmod 755 /usr/lib/libexample.so

$ sudo chown root:root /usr/lib/libexample.so

Managing User Permissions

To manage user permissions for accessing applications and files, use the
usermod command to modify user groups and permissions. For example,
to add a user to the sudo group:

$ sudo usermod -aG sudo username

Sample Program: Managing Dependencies for AlphaProject

We shall apply these concepts to manage dependencies for a web server
stack in AlphaProject.

Installing Apache, MySQL, and PHP (LAMP Stack)

Install Apache:

$ sudo apt install apache2

Check dependencies:

$ apt-cache depends apache2

Install MySQL:

$ sudo apt install mysql-server

Secure MySQL:

$ sudo mysql_secure_installation

Install PHP:

$ sudo apt install php libapache2-mod-php php-mysql

Check for Missing Dependencies:

$ sudo apt check

Fix Broken Packages:

$ sudo apt --fix-broken install

Modifying Configuration Files

Apache Configuration:

$ sudo nano /etc/apache2/apache2.conf

MySQL Configuration:

$ sudo nano /etc/mysql/my.cnf

PHP Configuration:

$ sudo nano /etc/php/7.4/apache2/php.ini

Setting Environment Variables

Set PHP Home:

$ export PHP_HOME=/usr/lib/php

Changing Permissions

Apache Web Directory:

$ sudo chmod -R 755 /var/www/html

$ sudo chown -R www-data:www-data /var/www/html

MySQL Data Directory:

$ sudo chmod -R 700 /var/lib/mysql

$ sudo chown -R mysql:mysql /var/lib/mysql

Make sure all the components you need are there, set appropriately, and
securely accessible in your Linux system by mastering and implementing
these dependency management approaches. Especially for complicated
projects like AlphaProject, this method keeps the system running
smoothly and efficiently.

Configuring System Hardware

One of the most important aspects of system administration is the
configuration of system hardware, which enables you to optimize and
personalize the resources that are available to your projects. Right now,
we're going to learn about setting up WiFi networks, firewalls, and other
external devices to function with AlphaProject.

Configuring WiFi Networks

To manage WiFi networks on your Linux system, you can use tools like
nmcli (NetworkManager Command Line Interface) and

Using ‘nmcli’

● Listing Available WiFi Networks:

$ nmcli device wifi list

This command lists all available WiFi networks.

● Connecting to a WiFi Network:

$ nmcli device wifi connect 'SSID' password 'your_password'

Replace SSID with the name of the WiFi network and your_password
with the network password.

● Checking Connection Status:

$ nmcli device status

This command shows the status of network devices.

Using ‘wpa_supplicant’

● Create a WPA Configuration File:

$ sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

● Add the following configuration:

network={

ssid="SSID"

psk="your_password"

}

Replace SSID with your network's SSID and your_password with the
network password.

● Start

$ sudo wpa_supplicant -B -i wlan0 -c
/etc/wpa_supplicant/wpa_supplicant.conf

This command runs wpa_supplicant in the background, connecting to the
specified WiFi network.

● Obtain an IP Address:

$ sudo dhclient wlan0

This command uses DHCP to obtain an IP address for the wlan0 interface.

Configuring Firewalls

Firewalls are crucial for securing your system by controlling incoming
and outgoing network traffic. ufw (Uncomplicated Firewall) is a user-
friendly interface for managing iptables firewall rules.

Using ‘ufw’

● Enable

$ sudo ufw enable

● Allowing SSH Connections:

$ sudo ufw allow ssh

This command ensures that SSH connections are permitted.

● Allowing HTTP and HTTPS Traffic:

$ sudo ufw allow http

$ sudo ufw allow https

● Denying Specific Traffic:

To block specific traffic, use the deny command. For example, to deny all
incoming traffic on port 8080:

$ sudo ufw deny 8080

● Viewing Firewall Status and Rules:

$ sudo ufw status verbose

Using iptables

For more advanced firewall configurations, you can use

● Allowing SSH Connections:

$ sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT

● Allowing HTTP and HTTPS Traffic:

$ sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT

$ sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT

● Blocking a Specific IP Address:

$ sudo iptables -A INPUT -s 192.168.1.100 -j DROP

This command blocks all traffic from IP address

● Saving iptables Rules:

After configuring iptables rules, save them to ensure they persist across
reboots:

$ sudo sh -c "iptables-save > /etc/iptables/rules.v4"

Configuring External Devices

External devices, such as USB drives, printers, and other peripherals,
often require specific configurations to function correctly.

Mounting USB Drives

● List Available Devices:

$ lsblk

This command lists all block devices, including USB drives.

● Create a Mount Point:

$ sudo mkdir /mnt/usb

● Mount the USB Drive:

$ sudo mount /dev/sdX1 /mnt/usb

Replace sdX1 with the appropriate device identifier from

● Access the USB Drive:

You can now access the contents of the USB drive at

● Unmount the USB Drive:

$ sudo umount /mnt/usb

Configuring Printers

● Install CUPS (Common Unix Printing System):

$ sudo apt install cups

● Start and Enable CUPS:

$ sudo systemctl start cups

$ sudo systemctl enable cups

● Add Your User to the lpadmin Group:

$ sudo usermod -aG lpadmin your_username

● Access the CUPS Web Interface:

Open a web browser and navigate to Use the web interface to add and
configure printers.

Connecting to Bluetooth Devices

● Install Bluetooth Utilities:

$ sudo apt install bluetooth bluez blueman

● Start and Enable Bluetooth Service:

$ sudo systemctl start bluetooth

$ sudo systemctl enable bluetooth

● Scan for Bluetooth Devices:

$ bluetoothctl

Within the bluetoothctl shell, use:

[bluetooth]# scan on

● Pair and Connect to a Device:

[bluetooth]# pair MAC_address

[bluetooth]# connect MAC_address

Sample Program: Configuring System Hardware for AlphaProject

Configuring Network Settings

● Connect to a WiFi Network:

$ nmcli device wifi connect 'AlphaWiFi' password 'alpha_password'

Setting up the Firewall

● Enable Firewall and Allow Essential Services:

$ sudo ufw enable

$ sudo ufw allow ssh

$ sudo ufw allow http

$ sudo ufw allow https

Mounting and Using an External USB Drive

● Identify and Mount the USB Drive:

$ lsblk

$ sudo mkdir /mnt/usb

$ sudo mount /dev/sdb1 /mnt/usb

● Access and Use the USB Drive:

$ cp /mnt/usb/project_files/* /projects/AlphaProject/

Configuring a Printer

● Install and Setup CUPS:

$ sudo apt install cups

$ sudo systemctl start cups

$ sudo systemctl enable cups

● Add User to lpadmin Group and Access CUPS:

$ sudo usermod -aG lpadmin alphauser

$ sudo service cups restart

● Configure Printer via Web Interface:

Open http://localhost:631 and follow the instructions to add the printer.

If you take the time to learn and use these settings, you'll be able to set up
AlphaProject with a solid foundation and plenty of room to grow. This

involves controlling external devices to increase efficiency and resource
use, installing firewalls for security, and setting up WiFi networks.

Upgrading Kernel

Part of what makes Linux an OS is its kernel, which connects programs to
the hardware. It keeps everything running smoothly, coordinates the flow
of data between programs and hardware, and monitors resource usage.
The kernel is in charge of managing processes, memory, device drivers,
and system calls.

Role of Kernel in System Functioning

The kernel plays several critical roles:

Manages the execution of processes, including multitasking, scheduling,
and resource allocation.

Handles memory allocation for processes, manages the virtual memory,
and ensures efficient use of RAM.

Provides a standardized interface for hardware devices, managing device
drivers and ensuring proper communication between hardware and
software.

Manages data storage, file operations, and access to different file systems.

5. security policies, manages user permissions, and ensures system
integrity.

Vulnerabilities to the Kernel

Due to its critical role, the kernel is a prime target for vulnerabilities that
can compromise system security and stability:

1. kernel vulnerabilities to gain unauthorized access or higher
privileges.

Exploiting kernel bugs to crash the system or render services unavailable.

3. sensitive information from the kernel memory.

4. malicious code to be executed with kernel-level privileges.

Upgrading the Kernel

Keeping the kernel up-to-date is crucial for maintaining security,
performance, and compatibility with new hardware and software. Let us
upgrade the kernel in our Linux environment for AlphaProject.

Checking the Current Kernel Version

First, check the current kernel version:

$ uname -r

This command outputs the version of the running kernel, for example,

Upgrading the Kernel on Debian-based Systems (Ubuntu)

● Update Package Lists:

$ sudo apt update

● Install the linux-image-generic Package:

The linux-image-generic package installs the latest stable kernel available
in the repositories.

$ sudo apt install linux-image-generic

● Reboot the System:

After installation, reboot the system to boot into the new kernel.

$ sudo reboot

● Verify the New Kernel Version:

After rebooting, check the kernel version again to ensure the update was
successful:

$ uname -r

Upgrading to a Specific Kernel Version

Sometimes, you might need to upgrade to a specific kernel version not
available in the standard repositories. For this, you can download and
install the kernel manually.

● Download the Kernel Packages:

Visit Kernel PPA and download the desired kernel version. For example:

$ wget https://kernel.ubuntu.com/~kernel-
ppa/mainline/v5.11.10/amd64/linux-headers-5.11.10-051110_5.11.10-
051110.202103200734_all.deb

$ wget https://kernel.ubuntu.com/~kernel-
ppa/mainline/v5.11.10/amd64/linux-headers-5.11.10-051110-
generic_5.11.10-051110.202103200734_amd64.deb

$ wget https://kernel.ubuntu.com/~kernel-
ppa/mainline/v5.11.10/amd64/linux-image-unsigned-5.11.10-051110-
generic_5.11.10-051110.202103200734_amd64.deb

$ wget https://kernel.ubuntu.com/~kernel-
ppa/mainline/v5.11.10/amd64/linux-modules-5.11.10-051110-
generic_5.11.10-051110.202103200734_amd64.deb

● Install the Kernel Packages:

$ sudo dpkg -i *.deb

● Update GRUB Configuration:

After installing the new kernel, update the GRUB bootloader
configuration.

$ sudo update-grub

Reboot the System:

$ sudo reboot

Verify the New Kernel Version:

$ uname -r

Upgrading the Kernel on Red Hat-based Systems (CentOS, Fedora)

● Update Package Lists:

$ sudo yum update

● Install the kernel Package:

The kernel package installs the latest stable kernel available in the
repositories.

$ sudo yum install kernel

● Reboot the System:

$ sudo reboot

● Verify the New Kernel Version:

$ uname -r

Handling Kernel Modules

Kernel modules are pieces of code that can be loaded and unloaded into
the kernel upon demand. They extend the functionality of the kernel
without the need to reboot the system.

● Listing Loaded Modules:

To list all loaded kernel modules, use:

$ lsmod

● Loading a Kernel Module:

To load a kernel module, use the modprobe command:

$ sudo modprobe module_name

● Unloading a Kernel Module:

To unload a kernel module, use the modprobe -r command:

$ sudo modprobe -r module_name

● Checking Module Information:

To check information about a specific module, use:

$ modinfo module_name

Managing Kernel Updates with UKUU

For Ubuntu and other Debian-based systems, the UKUU (Ubuntu Kernel
Update Utility) tool simplifies kernel updates.

● Install UKUU:

$ sudo add-apt-repository ppa:teejee2008/ppa

$ sudo apt update

$ sudo apt install ukuu

● Launch UKUU:

$ sudo ukuu-gtk

This command opens a graphical interface where you can select and
install different kernel versions.

To automate kernel updates and ensure you always have the latest security
patches and features, you can set up a cron job or use a system automation
tool like

● Install cron-apt:

$ sudo apt install cron-apt

● Configure cron-apt:

Edit the configuration file:

$ sudo nano /etc/cron-apt/config

Set it to automatically download and install updates:

APTCOMMAND=/usr/bin/apt-get

OPTIONS="-o quiet=1"

MAILON="always"

If you know what the kernel is and how to keep it updated, you can keep
your Linux system secure, stable, and up-to-date with all the newest
software and hardware improvements.

Handling Device Drivers

An operating system and its hardware components can't communicate
without device drivers. System stability and performance are greatly
affected by out-of-date device drivers. In this section, we will look at the
process of finding, updating, and automating the process of updating
device drivers in a Linux system.

Finding All Available Drivers

To list all available drivers on your system, you can use several tools and
commands.

Using ‘lsmod’

The lsmod command lists all currently loaded kernel modules (drivers):

$ lsmod

This command outputs a list of all loaded modules, including their names,
sizes, and usage counts.

Using ‘lspci’

The lspci command lists all PCI devices and their associated drivers:

$ lspci -k

This command provides detailed information about PCI devices and their
corresponding kernel drivers.

Using ‘lshw’

The lshw (list hardware) command displays detailed information about
hardware components, including drivers:

$ sudo lshw -c network

Replace network with the desired hardware class (e.g., to get specific
information.

Finding Drivers with Available Updates

To find out if there are updates available for your drivers, you can use
package management tools and additional utilities.

Using ‘apt’

● Update Package Lists:

$ sudo apt update

● List Upgradable Packages:

$ apt list --upgradable

This command lists all packages with available updates, including drivers.

Using ‘ubuntu-drivers’

The ubuntu-drivers tool is specifically designed for handling proprietary
drivers:

$ ubuntu-drivers list

This command lists all available drivers that can be installed or updated.

Using ‘fwupdmgr’

The fwupdmgr (Firmware Update Manager) tool can be used to check for
firmware updates:

$ sudo fwupdmgr get-updates

This command checks for available firmware updates for your system.

Updating Drivers

Once you’ve identified which drivers need updates, you can proceed to
update them.

Updating Drivers with ‘apt’

● Update Specific Packages:

$ sudo apt install --only-upgrade package_name

Replace package_name with the name of the package you want to update.

● Update All Packages:

$ sudo apt upgrade

This command updates all installed packages to their latest versions.

Updating Proprietary Drivers with ‘ubuntu-drivers’

Install Recommended Drivers:

$ sudo ubuntu-drivers autoinstall

This command installs all recommended proprietary drivers.

Updating Firmware with ‘fwupdmgr’

Apply Firmware Updates:

$ sudo fwupdmgr update

This command downloads and installs available firmware updates.

Automating Driver Updates

Automating the process of updating drivers ensures that your system
remains up-to-date with minimal manual intervention.

Using ‘cron-apt’ for Regular Updates

● Install

$ sudo apt install cron-apt

● Configure

Edit the configuration file:

$ sudo nano /etc/cron-apt/config

Set it to automatically download and install updates:

APTCOMMAND=/usr/bin/apt-get

OPTIONS="-o quiet=1"

MAILON="always"

● Add a Specific Command for Driver Updates:

Create or edit the configuration file in /etc/cron-apt/action.d/ to include
driver updates:

$ sudo nano /etc/cron-apt/action.d/3-driver-updates

● Add the following lines:

upgrade --with-new-pkgs -y

Using ‘fwupdmgr’ in a Cron Job

Edit the crontab for the root user:

$ sudo crontab -e

Add the following line to check for firmware updates daily:

0 3 * * * /usr/bin/fwupdmgr get-updates && /usr/bin/fwupdmgr update

Sample Program: Updating and Automating Driver Updates

Finding Current Drivers

● List Loaded Kernel Modules:

$ lsmod

● List PCI Devices and Drivers:

$ lspci -k

Identifying Available Driver Updates

● Update Package Lists:

$ sudo apt update

● List Upgradable Packages:

$ apt list --upgradable

● Check for Firmware Updates:

$ sudo fwupdmgr get-updates

Updating Drivers

● Update All Packages:

$ sudo apt upgrade

● Install Recommended Proprietary Drivers:

$ sudo ubuntu-drivers autoinstall

● Apply Firmware Updates:

$ sudo fwupdmgr update

Automating Updates

● Setup

$ sudo apt install cron-apt

$ sudo nano /etc/cron-apt/config

● Add to the configuration file:

APTCOMMAND=/usr/bin/apt-get

OPTIONS="-o quiet=1"

MAILON="always"

● Create a Driver Update Action File:

$ sudo nano /etc/cron-apt/action.d/3-driver-updates

● Add the following lines:

upgrade --with-new-pkgs -y

● Schedule Firmware Updates:

$ sudo crontab -e

● Add to crontab:

0 3 * * * /usr/bin/fwupdmgr get-updates && /usr/bin/fwupdmgr update

Following these instructions will help you manage and update your
AlphaProject device drivers efficiently. This will ensure that your system
is always up-to-date and secure.

Setting up and Managing Repositories

Linux systems cannot function without repositories, that contain software
packages. When you set up and manage repositories correctly, your
system will always have access to the most recent versions of the
programs you need for your projects. In this part, we will go over the
basics of using command-line tools to create, manage, and secure Linux
repositories.

Setting up Repositories

To set up repositories, you can add entries to your package manager’s
source list. On Debian-based systems like Ubuntu, this involves editing
files in /etc/apt/sources.list or adding new files in

Adding a Repository

Add a Repository Using

$ sudo add-apt-repository ppa:repository_name

This command adds a PPA (Personal Package Archive) to your system.
Replace repository_name with the actual PPA name.

Manually Adding a Repository

Edit the sources list file:

$ sudo nano /etc/apt/sources.list

Add a new line with the repository details:

deb http://archive.ubuntu.com/ubuntu/ bionic main universe

Replace http://archive.ubuntu.com/ubuntu/ with the URL of your desired
repository and bionic with your distribution codename.

Add a Repository Key

Some repositories require you to add a GPG key to verify package
authenticity. Use the following command to add a key:

$ wget -qO - https://gitforgits.com/key.gpg | sudo apt-key add -

Replace https://gitforgits.com/key.gpg with the URL to the key file.

Update Package List

After adding the repository, update the package list:

$ sudo apt update

Managing Repositories

Managing repositories involves enabling, disabling, removing, and
prioritizing them.

Enabling/Disabling Repositories

Repositories can be enabled or disabled by commenting or uncommenting
lines in the source list files.

● Disable a Repository:

$ sudo nano /etc/apt/sources.list

Comment out the repository line by adding a # at the beginning:

deb http://archive.ubuntu.com/ubuntu/ bionic main universe

● Enable a Repository:

Uncomment the repository line by removing the

deb http://archive.ubuntu.com/ubuntu/ bionic main universe

Removing a Repository

To remove a repository, delete its entry from the source list file.

$ sudo nano /etc/apt/sources.list

Delete the corresponding repository line:

deb http://archive.ubuntu.com/ubuntu/ bionic main universe

Using ‘apt’ Preferences

You can control the priority of repositories using the /etc/apt/preferences
file.

● Create or Edit the Preferences File:

$ sudo nano /etc/apt/preferences

● Add entries to set priority:

Package: *

Pin: release a=bionic

Pin-Priority: 500

Package: *

Pin: release o=Ubuntu

Pin-Priority: 700

Protecting Repositories

Repository protection ensures that the packages you download and install
are authentic and have not been tampered with.

GPC Keys

GPG keys are used to sign repositories and verify the integrity of
packages.

● Add a GPG Key:

$ wget -qO - https://gitforgits.com/key.gpg | sudo apt-key add -

● List Installed GPG Keys:

$ apt-key list

● Remove a GPG Key:

$ sudo apt-key del key_id

Enabling Secure APT

Secure APT ensures that packages are downloaded and verified using
GPG signatures.

● Check Secure APT Configuration:

Edit the configuration file:

$ sudo nano /etc/apt/apt.conf.d/10secure

Ensure it contains the following:

APT::Get::AllowUnauthenticated "false";

● Using

apt-secure is integrated with apt to ensure package authenticity.

During the update process, apt will automatically verify package
signatures. If there are issues with verification, you will receive a warning.

Sample Program: Setting up and Managing Repositories for AlphaProject

Adding a Repository

● Add a PPA for AlphaProject:

$ sudo add-apt-repository ppa:alpha/ppa

● Add Repository Key:

$ wget -qO - https://alpha.com/key.gpg | sudo apt-key add -

● Update Package List:

$ sudo apt update

Managing Repositories

● Enable a Repository:

$ sudo nano /etc/apt/sources.list

● Uncomment the line:

deb http://archive.ubuntu.com/ubuntu/ focal main universe

● Disable a Repository:

$ sudo nano /etc/apt/sources.list

● Comment the line:

deb http://archive.ubuntu.com/ubuntu/ focal main universe

● Remove a Repository:

$ sudo nano /etc/apt/sources.list

● Delete the line:

deb http://archive.ubuntu.com/ubuntu/ focal main universe

Setting Priorities with ‘apt’ Preferences

● Edit Preferences File:

$ sudo nano /etc/apt/preferences

● Add priority settings:

Package: *

Pin: release a=focal

Pin-Priority: 600

Package: *

Pin: release o=Ubuntu

Pin-Priority: 800

Protecting Repositories

● Check Installed GPG Keys:

$ apt-key list

● Add a GPG Key:

$ wget -qO - https://alpha.com/key.gpg | sudo apt-key add -

● Enable Secure APT:

$ sudo nano /etc/apt/apt.conf.d/10secure

● Ensure the file contains:

APT::Get::AllowUnauthenticated "false";

This method offers a safe and dependable way to handle software
installation and update management. By adhering to these guidelines, you
will be able to successfully establish and administer AlphaProject
repositories, giving you access to all required software packages without
compromising our system's security or integrity.

Installing and Configuring Virtual Machines with VirtualBox

To create, test, and release software in sandboxed settings, virtual
machines (VMs) are necessary. They simplify the management of various
development environments, test settings, and legacy programs by enabling
the running of numerous operating systems on the same physical machine.
VirtualBox supports the creation and management of virtual machines
across various operating systems, including Linux, Windows, and macOS.
By offering uniform and reproducible environments, virtual machines help
streamline development and testing procedures for AlphaProject.

Installing VirtualBox

To install VirtualBox on a Debian-based system like Ubuntu, follow these
steps:

● Update Your System:

$ sudo apt update

● Install Required Dependencies:

$ sudo apt install -y wget gnupg2

● Download and add the VirtualBox signing key:

$ wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -
O- | sudo apt-key add -

$ wget -q https://www.virtualbox.org/download/oracle_vbox.asc -O- |
sudo apt-key add -

● Add the VirtualBox repository to your sources list:

$ sudo add-apt-repository "deb [arch=amd64]
http://download.virtualbox.org/virtualbox/debian $(lsb_release -cs)
contrib"

● Install VirtualBox:

$ sudo apt update

$ sudo apt install -y virtualbox-6.1

● Check the version of VirtualBox to ensure it is installed correctly:

$ vboxmanage --version

Setting up a Virtual Machine for AlphaProject

Once VirtualBox is installed, you can create and configure a virtual
machine for AlphaProject.

● Open VirtualBox from the application menu or by running:

$ virtualbox

● Create a New Virtual Machine:

○ Click on the "New" button to create a new VM.

○ Enter the name of the VM (e.g., "AlphaProjectVM"), select the
type (Linux), and version (Ubuntu 64-bit).

○ Click "Next" to proceed.

● Allocate Memory:

○ Allocate memory (RAM) for the VM. For development purposes,
at least 2GB (2048MB) is recommended.

○ Click "Next" to proceed.

● Create a Virtual Hard Disk:

○ Select "Create a virtual hard disk now" and click "Create".

○ Choose the hard disk file type. The default VDI (VirtualBox Disk
Image) is suitable.

○ Choose "Dynamically allocated" to allow the disk to grow as
needed.

○ Specify the size of the virtual hard disk. For development, at least
20GB is recommended.

○ Click "Create" to finish creating the virtual hard disk.

● Configure the Virtual Machine:

○ Select the newly created VM and click on "Settings".

In the "System" tab, ensure the allocated RAM is appropriate and that
"Enable EFI" is unchecked unless you need UEFI.

○ In the "Processor" tab, allocate at least 2 CPU cores if available.

○ In the "Display" tab, increase the Video Memory to 128MB for
better graphical performance.

● Attach an ISO Image:

○ In the "Storage" tab, click on the "Empty" CD icon under
"Controller: IDE".

○ Click on the CD icon next to "Optical Drive" and select "Choose a
disk file".

○ Select the ISO image of the Ubuntu installation media you
downloaded earlier.

○ Click "OK" to save the settings.

● Start the Virtual Machine:

○ Select the VM and click "Start".

○ The VM will boot from the ISO image, starting the Ubuntu
installation process.

Installing Ubuntu on the Virtual Machine

Follow these steps to install Ubuntu on your new VM:

● Boot from ISO:

○ The VM should boot from the attached ISO. Select "Install
Ubuntu" from the boot menu.

● Choose Language and Keyboard Layout:

○ Follow the prompts to select your preferred language and keyboard
layout.

● Update and Other Software:

○ Select "Normal installation" and check "Download updates while
installing Ubuntu" for a smoother installation process.

○ Click "Continue".

● Disk Partitioning:

○ Choose "Erase disk and install Ubuntu" as this VM will be used for
development and testing purposes.

○ Click "Install Now" and confirm any prompts to write changes to
the disk.

● Setup User Account:

○ Enter your name, the name of your computer (e.g.,
AlphaProjectVM), and choose a username and password.

○ Click "Continue" to proceed with the installation.

● Complete Installation:

○ The installer will copy files and configure the system. This may
take some time.

○ Once the installation is complete, click "Restart Now" to reboot the
VM.

● Remove the Installation Media:

When prompted, remove the installation media by clicking "Devices" in
the VirtualBox menu, selecting "Optical Drives", and unchecking the ISO
file.

○ Press "Enter" to reboot.

Post-Installation Configuration

After installing Ubuntu on the VM, perform some basic configurations to
prepare the VM for development.

● Update the System:

○ Open a terminal and update the package list and upgrade installed
packages:

$ sudo apt update

$ sudo apt upgrade -y

● Install Essential Packages:

○ Install development tools and libraries needed for AlphaProject:

$ sudo apt install -y build-essential git curl vim

● Install VirtualBox Guest Additions:

Guest Additions provide better integration between the host and guest
systems, including shared folders and improved graphics performance.

○ In the VirtualBox menu, click "Devices" and select "Insert Guest
Additions CD image".

○ If prompted to download the ISO, allow it to do so.

○ Mount the CD image and install the Guest Additions:

$ sudo mount /dev/cdrom /mnt

$ sudo /mnt/VBoxLinuxAdditions.run

● Reboot the VM:

$ sudo reboot

● Setup Shared Folders:

To enable shared folders between the host and the VM, go to the VM
settings in VirtualBox, click on "Shared Folders", and add a new shared
folder.

○ Make sure to check "Auto-mount" and "Make Permanent".

○ Access the shared folder from the VM:

$ sudo usermod -aG vboxsf your_username

● Networking Configuration:

Ensure the VM is connected to the network. The default NAT networking
mode should suffice for most purposes.

To use a bridged network, go to the VM settings, click on "Network", and
select "Bridged Adapter".

● Install Specific Software for AlphaProject:

Install any additional software or dependencies specific to AlphaProject.
For instance, if your project requires Node.js:

$ curl -sL https://deb.nodesource.com/setup_14.x | sudo -E bash -

$ sudo apt install -y nodejs

The ability to handle many development environments, test setups, and
maintain consistency across the project's stages is made possible by this
above structured steps.

Summary

The primary emphasis of this chapter was the process of configuring,
deploying, and upgrading hardware and software for Linux systems. At
the outset of the chapter, we learned how to use apt and yum, two of the
most important tools for managing software packages on Debian-and Red
Hat-based systems, respectively. To make sure all the required parts were
available and working properly, we looked at the process of managing
dependencies, which included finding, updating, and modifying them. For
effective package management, this required the use of tools such as apt-
cache dependencies and apt-get.

Managing external devices like USB drives and printers, establishing
firewalls with ufw and iptables, and setting up WiFi networks with nmcli
and wpa_supplicant were all addressed in the chapter on configuring
system hardware. We covered why it is important to update the kernel for
better security and speed, and we went over the specifics of how to do it
on Debian and Red Hat systems. Another important subject was managing
device drivers, wherein techniques for locating, updating, and automating
driver updates were showcased utilizing utilities such as fwupdmgr,
ubuntu-drivers, lsmod, and lspci.

In order to guarantee access to the most recent software packages, the
process of setting up and managing repositories was thoroughly explained,
including how to add, remove, and prioritize repositories. Enabling secure
APT to preserve package integrity and protecting repositories using GPG
keys were also covered in the chapter.

At last, the chapter delves into the process of setting up VirtualBox and
creating virtual machines. It went over everything you need to know about
virtual machines (VMs) for testing and development, including how to
install VirtualBox and set up a VM for AlphaProject. We also covered
post-installation adjustments to enhance the development environment of
the virtual machine, including installing necessary programs, VirtualBox
Guest Additions, and shared folders. Thanks to your detailed introduction,
I now know how to manage Linux systems' software and hardware.

Chapter IV: User and Permission Management

Overview

In this final chapter, we will look at user and permission management,
which is critical for maintaining system security and ensuring that users
have proper access levels. In the first section of the final chapter, you will
get the necessary information to easily create, edit, and delete user
accounts. To make sure users have the right permissions and environment
settings for their responsibilities, we'll also go over how to manage and
personalize user profiles.

Next, you will learn how to use Linux's permission model to manage who
may access what files and folders by going over the basics of file
ownership and permissions. You will also gain knowledge of Access
Control Lists (ACLs), a way to specify permissions at a finer level than
the typical user-group-other paradigm. Another crucial part is managing
user sessions, where you'll learn about commands and tools to keep tabs
on and manage all of the sessions that are currently running on your
system.

We will also learn how to set up sudo for administrative tasks so that
specific users can safely execute privileged actions. The chapter will go
over password rules and how to manage them so that you may have strong
authentication procedures. Additionally, you will gain knowledge about
PAMs, which provide a versatile way to include different authentication
methods. At last, we'll go over how to manage group memberships to
make users more organized and streamline permission management. This
way, we can make sure that only appropriate individuals have access to

the resources they need. The goal of this chapter is to provide you the
tools you need to become an expert Linux user and permission manager.

Creating and Managing User Accounts

Creating User Accounts

Creating and managing user accounts is a fundamental task in Linux
administration, essential for controlling access to system resources. To
create user accounts, you use the useradd command, followed by various
options to specify user details.

There are three primary types of user accounts: regular users, system
users, and service users.

Creating Regular User Accounts

Regular users are typical users who log in and use the system.

● Create a Regular User:

$ sudo useradd -m -s /bin/bash username

This command creates a user with the specified username, a home
directory and sets the default shell to Bash

● Set Password for the User:

$ sudo passwd username

You'll be prompted to enter and confirm the password for the user.

Creating System User Accounts

System users are typically used by system services and do not require a
home directory or shell.

● Create a System User:

$ sudo useradd -r -s /usr/sbin/nologin sysuser

The -r option creates a system user, and -s /usr/sbin/nologin ensures the
user cannot log in interactively.

Creating Service User Accounts

Service users are similar to system users but are often associated with
specific services or applications.

● Create a Service User:

$ sudo useradd -r -m -s /bin/false serviceuser

The -r option creates a system user, -m creates a home directory, and -s
/bin/false prevents login.

Managing User Accounts

Once user accounts are created, you can manage them using various
commands to modify user details, lock/unlock accounts, and delete
accounts.

Modifying User Accounts

Use the usermod command to change user properties.

● Change User's Shell:

$ sudo usermod -s /bin/zsh username

This command changes the user's shell to Zsh.

● Change User's Home Directory:

$ sudo usermod -d /new/home/dir -m username

The -d option specifies the new home directory, and -m moves the content
from the old home directory to the new one.

● Add User to a Group:

$ sudo usermod -aG groupname username

The -aG option appends the user to the specified group.

Locking and Unlocking User Accounts

Lock user accounts to prevent login without deleting them.

● Lock a User Account:

$ sudo usermod -L username

This command locks the user's password, preventing login.

● Unlock a User Account:

$ sudo usermod -U username

This command unlocks the user's password, allowing login.

Deleting User Accounts

Use the userdel command to remove user accounts.

● Delete a User Account:

$ sudo userdel username

This command deletes the user account but leaves the home directory and
files.

● Delete a User Account and Home Directory:

$ sudo userdel -r username

The -r option removes the user's home directory and files.

Viewing User Account Information

Use the and getent commands to view information about user accounts.

● View User ID and Group Information:

$ id username

This command displays the user's UID, GID, and group memberships.

● Get User Account Details:

$ finger username

This command displays user information like login name, home directory,
and shell.

● Query User Database:

$ getent passwd username

This command retrieves the user's entry from the /etc/passwd file.

Managing User Account Expiry

Set expiry dates for user accounts using the chage command.

● Set Account Expiry Date:

$ sudo chage -E 2022-12-31 username

This command sets the user's account to expire on December 31, 2022.

● View Account Expiry Information:

$ chage -l username

This command displays the password and account expiry information.

Changing User Password Expiry

Control password expiry policies for users.

● Force Password Change on Next Login:

$ sudo chage -d 0 username

This command forces the user to change their password on the next login.

● Set Password Expiry Interval:

$ sudo chage -M 90 username

This command sets the password to expire every 90 days.

Creating Bulk User Accounts

Automate user account creation using a script.

● Create a Script to Add Multiple Users:

Create a file named

$ sudo nano add_users.sh

Add the following script:

#!/bin/bash

for i in {1..10}; do

username="user$i"

password="password$i"

sudo useradd -m -s /bin/bash $username

echo "$username:$password" | sudo chpasswd

done

Save and close the file.

● Make the Script Executable and Run It:

$ sudo chmod +x add_users.sh

$ sudo ./add_users.sh

This script creates ten user accounts with usernames user1 to user10 and
sets their passwords.

These scripts and commands will help you manage user accounts on
Linux system efficiently, giving each user the rights they need to do their
jobs. This method enables you to automate account administration tasks,
adjust user preferences, and control their access.

Modifying User Profiles

Modifying user profiles involves changing various attributes of user
accounts, such as home directories, shells, group memberships, and more.
The usermod utility is the primary tool for making these modifications. In
this section, we will use usermod to modify different types of user profiles
created in the previous section.

‘Usermod’ Overview

The usermod command is used to modify existing user accounts in a
Linux system. It allows you to change user information such as login
names, home directories, shells, group memberships, and account expiry
settings.

Using ‘usermod’

We shall modify the user profiles for regular users, system users, and
service users created in the previous section.

Modifying Regular User Accounts

● Changing the User's Shell:

To change a user's shell, use the -s option followed by the path to the new
shell.

$ sudo usermod -s /bin/zsh user1

This command changes shell to Zsh.

● Changing the User's Home Directory:

To change a user's home directory and move their files to the new
directory, use the -d and -m options.

$ sudo usermod -d /home/new_user1 -m user1

This command sets the new home directory for user1 to /home/new_user1
and moves existing files to this directory.

● Adding the User to a New Group:

To add a user to a new group without removing them from other groups,
use the -aG options.

$ sudo usermod -aG sudo user1

This command adds user1 to the sudo group.

● Changing the User's Login Name:

To change a user's login name, use the -l option followed by the new login
name.

$ sudo usermod -l newuser1 user1

This command changes login name to

Modifying System User Accounts

● Changing the User's Shell:

System users often have shells set to /usr/sbin/nologin or To change this:

$ sudo usermod -s /bin/bash sysuser

This command changes shell to Bash, allowing login.

● Locking and Unlocking the User Account:

To lock a system user account, preventing login:

$ sudo usermod -L sysuser

● To unlock the system user account:

$ sudo usermod -U sysuser

● Setting an Account Expiry Date:

To set an expiry date for a system user account:

$ sudo usermod -e 2023-12-31 sysuser

This command sets the expiry date for sysuser to December 31, 2023.

Modifying Service User Accounts

● Changing the Home Directory:

Service users might need their home directories changed for configuration
purposes.

$ sudo usermod -d /srv/new_serviceuser -m serviceuser

This command sets the new home directory for serviceuser to
/srv/new_serviceuser and moves existing files.

● Changing the User's Shell:

To ensure a service user cannot log in, set their shell to

$ sudo usermod -s /bin/false serviceuser

● Adding the User to a Specific Group:

If a service user needs to be part of a specific group for permissions:

$ sudo usermod -aG www-data serviceuser

This command adds serviceuser to the www-data group.

Viewing Changes Made to User Accounts

After making changes to user accounts, you can view the updated user
information using various commands.

● Checking User Information with

$ getent passwd user1

This command retrieves the passwd entry for showing updated
information such as the home directory and shell.

● Verifying Group Memberships:

$ groups user1

This command lists all groups that user1 belongs to.

● Viewing Account Expiry Information with

$ chage -l sysuser

This command displays the password and account expiry information for

Automating User Modifications

You can automate user modifications using scripts. Given below is a script
to batch modify users created previously:

Create a file named

$ sudo nano modify_users.sh

Add the following script:

#!/bin/bash

for i in {1..10}; do

username="user$i"

sudo usermod -s /bin/zsh $username

sudo usermod -aG sudo $username

sudo usermod -d /home/new_$username -m $username

done

This script changes the shell to Zsh, adds the user to the sudo group, and
changes the home directory for users user1 to

Make the Script Executable and Run It:

$ sudo chmod +x modify_users.sh

$ sudo ./modify_users.sh

This approach ensures that all user modifications are applied consistently
across multiple user accounts.

Setting File Permissions and Ownership

File permissions and ownership are crucial in Linux for securing files and
directories, ensuring that only authorized users can access or modify them.
We shall explore how to define file permissions and ownership for the
files and folders created in our AlphaProject, including practical examples.

Understanding File Permissions

In Linux, each file and directory has associated permissions that control
read write and execute access for three categories:

1. The user who owns the file.

2. Users who are part of the file's group.

3. All other users.

Permissions are represented by a string of ten characters, such as

● The first character indicates the type for a file, d for a directory).

● The next three characters represent permissions for the owner.

● The following three characters represent permissions for the group.

● The last three characters represent permissions for others.

Setting Permissions with ‘chmod’

The chmod command is used to change file permissions. Permissions can
be set using symbolic (e.g., or numeric (e.g., modes.

Using Symbolic Mode

● Granting Read, Write, and Execute Permissions to the Owner:

$ chmod u+rwx /projects/AlphaProject

● Granting Read and Execute Permissions to the Group:

$ chmod g+rx /projects/AlphaProject

● Removing Write Permission for Others:

$ chmod o-w /projects/AlphaProject

Using Numeric Mode

Permissions can also be set using a three-digit octal number, where each
digit represents the permissions for owner, group, and others, respectively.

● Setting Permissions to 755 (rwxr-xr-x):

$ chmod 755 /projects/AlphaProject

● Setting Permissions to 644 (rw-r--r--):

$ chmod 644 /projects/AlphaProject/file.txt

Changing Ownership with ‘chown’

The chown command changes the owner and group of a file or directory.

● Changing the Owner of a File:

$ sudo chown user1 /projects/AlphaProject/file.txt

● Changing the Group of a File:

$ sudo chown :developers /projects/AlphaProject/file.txt

● Changing Both Owner and Group:

$ sudo chown user1:developers /projects/AlphaProject/file.txt

● Changing Ownership Recursively:

$ sudo chown -R user1:developers /projects/AlphaProject

Sample Program: Setting Permissions and Ownership in AlphaProject

We shall apply these commands to set permissions and ownership for the
files and folders created so far in AlphaProject.

● Creating Directories and Files:

$ mkdir -p /projects/AlphaProject/{src,bin,logs}

$ touch /projects/AlphaProject/{README.md,src/main.py,logs/app.log}

● Setting Directory Permissions:

Set directory permissions to allow the owner full access, the group read
and execute access, and others no access:

$ chmod 750 /projects/AlphaProject

$ chmod 750 /projects/AlphaProject/src

$ chmod 750 /projects/AlphaProject/bin

$ chmod 750 /projects/AlphaProject/logs

● Setting File Permissions:

Set file permissions to allow the owner read and write access, the group
read access, and others no access:

$ chmod 640 /projects/AlphaProject/README.md

$ chmod 640 /projects/AlphaProject/src/main.py

$ chmod 640 /projects/AlphaProject/logs/app.log

Setting Ownership:

Change the ownership of the project files to user1 and the developers
group:

$ sudo chown -R user1:developers /projects/AlphaProject

● Verifying Permissions and Ownership:

List the directory to verify permissions and ownership:

$ ls -l /projects/AlphaProject

Desired output:

drwxr-x--- 3 user1 developers 4096 Jan 1 12:00 bin

drwxr-x--- 3 user1 developers 4096 Jan 1 12:00 logs

drwxr-x--- 3 user1 developers 4096 Jan 1 12:00 src

-rw-r----- 1 user1 developers 0 Jan 1 12:00 README.md

Using ‘umask’ to Set Default Permissions

The umask command sets default permissions for newly created files and
directories. It defines which permission bits will not be set.

● Viewing the Current

$ umask

● Setting a

To set a default umask that allows read and write permissions for the
owner, and read permissions for the group, use:

$ umask 022

● Persistent umask Setting:

To make the umask setting persistent, add it to the user's shell
configuration file (e.g.,

echo "umask 022" >> ~/.bashrc

source ~/.bashrc

Advanced Permissions with Setuid, Setgid, and Sticky Bit

Setuid

Setuid (Set User ID) allows a file to be executed with the privileges of the
file's owner.

● Setting Setuid:

$ sudo chmod u+s /projects/AlphaProject/bin/script.sh

Setgid

Setgid (Set Group ID) allows a file to be executed with the privileges of
the file's group, and directories created within a setgid directory inherit the
group of the directory.

● Setting Setgid on a Directory:

$ sudo chmod g+s /projects/AlphaProject/src

Sticky Bit

The sticky bit on a directory restricts file deletion; only the file owner,
directory owner, and root can delete or rename files.

● Setting Sticky Bit:

$ sudo chmod +t /projects/AlphaProject/logs

Sample Program: Advanced Permissions

Creating a Script with Setuid

● Create a script in the bin directory:

$ echo -e '#!/bin/bash\necho "Running as $(whoami)"' >
/projects/AlphaProject/bin/script.sh

$ chmod +x /projects/AlphaProject/bin/script.sh

● Setting Setuid on the Script:

$ sudo chmod u+s /projects/AlphaProject/bin/script.sh

Testing the Script

● Execute the script as a different user:

$ sudo -u user2 /projects/AlphaProject/bin/script.sh

The script runs with privileges.

● Creating a Directory with Setgid:

$ mkdir /projects/AlphaProject/shared

$ sudo chmod g+s /projects/AlphaProject/shared

Creating Files in Setgid Directory

Files created in the shared directory inherit the group

$ touch /projects/AlphaProject/shared/file.txt

$ ls -l /projects/AlphaProject/shared/file.txt

● Setting Sticky Bit on the Logs Directory:

$ sudo chmod +t /projects/AlphaProject/logs

Verifying Sticky Bit

The sticky bit ensures only the owner can delete files in the logs directory:

$ ls -ld /projects/AlphaProject/logs

AlphaProject's file permissions and ownership can be efficiently managed
through the configuration of these settings and commands. This method
gives you a thorough grasp of Linux file permission management by
covering everything from fundamental permission settings to sophisticated
permission procedures, including ownership changes.

Using ACLs (Access Control Lists)

Introduction to ACLs

ACLs provide a more flexible permission mechanism for files and
directories in Linux compared to the traditional Unix permission model.
ACLs allow you to define permissions for multiple users and groups,
beyond the basic owner-group-other categories.

An ACL specifies which users or system processes can access specific
resources, as well as what operations they can perform. ACLs extend the
standard file permission model by allowing you to set permissions for any
number of users and groups on a per-file or per-directory basis.

Key Concepts of ACLs:

● ACL Entries: Each ACL entry defines the permissions for a
specific user or group.

● Access ACLs: Apply to files and directories, specifying
permissions for reading, writing, and executing.

Default ACLs: Apply to directories, specifying the default permissions for
newly created files and subdirectories within the directory.

Configuring ACLs

To work with ACLs, ensure the filesystem supports ACLs (e.g., ext4,
XFS) and the acl package is installed.

● Install the ACL Package:

$ sudo apt install acl

● Enable ACLs on the Filesystem (if not enabled by default):

○ Mount the filesystem with the acl option:

$ sudo mount -o remount,acl /dev/sda1 /mnt

○ To make this change permanent, add the acl option to

$ sudo nano /etc/fstab

○ Add acl to the relevant line:

/dev/sda1 /mnt ext4 defaults,acl 0 0

Sample Program: Using ACLs in AlphaProject

● At first, setup the Project Directory:

$ mkdir -p /projects/AlphaProject/{src,bin,logs}

$ sudo chown -R user1:developers /projects/AlphaProject

$ sudo chmod -R 750 /projects/AlphaProject

● Set ACLs for Specific Users:

Use setfacl to set ACLs. For example, allow user2 to read and write to the
src directory:

$ sudo setfacl -m u:user2:rw /projects/AlphaProject/src

● Verify the ACL:

Use getfacl to view the ACLs of a file or directory:

$ getfacl /projects/AlphaProject/src

Desired output:

file: projects/AlphaProject/src

owner: user1

group: developers

user::rwx

user:user2:rw-

group::r-x

mask::rwx

other::---

● Set Default ACLs:

Default ACLs ensure that new files and directories inherit the ACLs from
their parent directory. For example, set default ACLs on the logs directory:

$ sudo setfacl -d -m u:user2:rw /projects/AlphaProject/logs

● Verify the default ACL:

$ getfacl /projects/AlphaProject/logs

Desired output:

file: projects/AlphaProject/logs

owner: user1

group: developers

user::rwx

group::r-x

other::---

default:user::rwx

default:user:user2:rw-

default:group::r-x

default:mask::rwx

default:other::---

Scenario 1: Granting Temporary Write Access

Suppose user3 needs temporary write access to the src directory to help
with development.

● Grant Write Access:

$ sudo setfacl -m u:user3:rw /projects/AlphaProject/src

● Remove Write Access After Completion:

$ sudo setfacl -x u:user3 /projects/AlphaProject/src

Scenario 2: Providing Read-Only Access to Logs

user4 needs read-only access to the logs directory to monitor application
logs.

● Grant Read-Only Access:

$ sudo setfacl -m u:user4:r /projects/AlphaProject/logs

Scenario 3: Inheriting Permissions for New Files

Ensure that any new files created in the src directory have specific
permissions for

● Set Default ACLs:

$ sudo setfacl -d -m u:user2:rw /projects/AlphaProject/src

● Verify the Inheritance:

Create a new file and check its ACL:

$ touch /projects/AlphaProject/src/newfile.txt

$ getfacl /projects/AlphaProject/src/newfile.txt

Desired output:

file: projects/AlphaProject/src/newfile.txt

owner: user1

group: developers

user::rw-

user:user2:rw-

group::r-x

mask::rw-

other::---

Scenario 4: Masking ACL Permissions

The mask controls the maximum effective permissions for all entries
except the owner. Suppose you want to restrict all additional users to read-
only access in the logs directory, regardless of their individual ACL
entries.

● Set the Mask:

$ sudo setfacl -m m::r /projects/AlphaProject/logs

● Verify the Mask:

$ getfacl /projects/AlphaProject/logs

Desired output:

file: projects/AlphaProject/logs

owner: user1

group: developers

user::rwx

user:user2:rw-

group::r-x

mask::r--

other::---

default:user::rwx

default:user:user2:rw-

default:group::r-x

default:mask::r--

default:other::---

Scenario 5: Removing All ACL Entries

If you decide to revert to standard permissions and remove all ACL entries
for a file or directory:

● Remove ACLs:

$ sudo setfacl -b /projects/AlphaProject/src

● Verify Removal:

$ getfacl /projects/AlphaProject/src

The output should no longer show any additional ACL entries.

This approach ensures that multiple users and groups have the appropriate
permissions to perform their tasks without compromising the overall

security and integrity of the AlphaProject

Managing User Sessions

For activity monitoring, system security, and resource availability,
managing user sessions is extremely important. This section will go over
the key elements of session management in a Linux environment,
including how to detect, monitor, and finally end user sessions.

Identifying User Sessions

To manage user sessions, you first need to identify which users are logged
into the system and gather details about their sessions.

Using ‘who’

The who command displays a list of users currently logged into the
system.

$ who

Desired output:

user1 tty7 2024-05-20 10:00 (:0)

user2 pts/0 2024-05-20 10:05 (192.168.1.10)

user3 pts/1 2024-05-20 10:10 (192.168.1.11)

This output shows the username, terminal, login time, and remote host (if
applicable).

Using ‘w’

The w command provides more detailed information about logged-in
users and their activities.

$ w

Desired output:

10:15:32 up 2:15, 3 users, load average: 0.25, 0.30, 0.25

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

user1 tty7 :0 10:00 2:15m 0.10s 0.10s /usr/bin/gnome-session

user2 pts/0 192.168.1.10 10:05 0.01s 0.20s 0.05s bash

user3 pts/1 192.168.1.11 10:10 0.02s 0.15s 0.03s sshd: user3 [priv]

This output includes the idle time, JCPU (time used by all processes
attached to the tty), and PCPU (time used by the current process).

Using ‘last’

The last command shows the history of user logins.

$ last

Desired output:

user3 pts/1 192.168.1.11 Mon May 20 10:10 still logged in

user2 pts/0 192.168.1.10 Mon May 20 10:05 still logged in

user1 tty7 :0 Mon May 20 10:00 still logged in

reboot system boot 5.4.0-42-generic Mon May 20 08:00 still running

This output shows the user logins, login times, and logout times.

Tracking User Sessions

Tracking user sessions involves monitoring user activities and gathering
detailed session information.

Using ‘ps’

The ps command displays information about active processes. You can use
it to track processes started by a specific user.

$ ps -u user2

Desired output:

PID TTY TIME CMD

1350 pts/0 00:00:00 bash

1365 pts/0 00:00:00 ps

This command shows the processes started by

Using ‘top’

The top command provides a dynamic, real-time view of running
processes, including user sessions.

$ top -u user2

This command filters the output to show only the processes owned by

Using ‘htop’

The htop command is an enhanced version of top with a more user-
friendly interface. To filter by user:

$ htop

Press F4 and type the username to filter the processes by that user.

Suspending User Sessions

Suspending a user session involves pausing all processes associated with
the session without terminating them. This can be done using signals.

Using ‘kill -STOP’

The kill -STOP command sends a STOP signal to suspend a process.

● Find the PID:

$ ps -u user2

● Suspend the Process:

$ sudo kill -STOP 1350

Using ‘pkill’

The pkill command can send signals to processes based on criteria such as
username.

$ sudo pkill -STOP -u user2

This command suspends all processes belonging to

Resuming User Sessions

Resuming a user session involves sending a CONT signal to continue the
suspended processes.

Using ‘kill -CONT’

● Find the PID:

$ ps -u user2

● Resume the Process:

$ sudo kill -CONT 1350

Using ‘pkill’

$ sudo pkill -CONT -u user2

This command resumes all processes belonging to

Terminating User Sessions

Terminating a user session involves stopping all processes associated with
the session.

Using ‘kill’

The kill command sends signals to processes to terminate them.

● Find the PID:

$ ps -u user2

● Terminate the Process:

$ sudo kill -TERM 1350

Using ‘pkill’

The pkill command can be used to terminate all processes for a user.

$ sudo pkill -TERM -u user2

Using ‘killall’

The killall command kills all instances of a specified process.

$ sudo killall -u user2

This command terminates all processes belonging to

Using ‘skill’

The skill command sends a signal to all processes owned by a specific
user.

$ sudo skill -KILL -u user2

This command forcefully kills all processes owned by

Sample Program: Managing User Sessions in AlphaProject

Scenario 1: Identifying and Tracking User Sessions

● List Currently Logged-In Users:

$ who

● Detailed Information on User Sessions:

$ w

● View User Login History:

$ last

● Monitor Processes for a Specific User:

$ ps -u user2

$ top -u user2

Scenario 2: Suspending and Resuming Sessions

● Suspend All Processes for

$ sudo pkill -STOP -u user2

● Verify Suspension:

$ ps -u user2

● Resume All Processes for

$ sudo pkill -CONT -u user2

● Verify Resumption:

$ ps -u user2

Scenario 3: Terminating User Sessions

● Terminate All Processes for

$ sudo pkill -TERM -u user2

● Verify Termination:

$ ps -u user2

● Forcefully Kill All Processes for

$ sudo skill -KILL -u user2

● Verify All Processes Are Terminated:

$ ps -u user2

Gaining proficiency in these commands and procedures will allow you to
efficiently manage user sessions and a full command over user actions on
the system and includes locating, following, pausing, and ending user
sessions.

Configuring ‘sudo’ for Administrative Tasks

sudo (superuser do) is a command-line utility that allows a permitted user
to execute a command as the superuser or another user, as specified by the
security policy. Configuring sudo is crucial for delegating administrative
tasks without giving users full root access, thereby enhancing system
security and accountability.

Necessity of Configuring ‘sudo’

Configuring sudo is essential for several reasons:

Limits the use of the root account, reducing the risk of accidental or
malicious system changes.

Logs the commands executed by users with elevated privileges, providing
an audit trail.

Grants specific administrative privileges to users or groups, allowing them
to perform necessary tasks without full administrative rights.

Configuring ‘sudo’

To configure you edit the /etc/sudoers file using the visudo command,
which ensures syntax correctness and prevents multiple simultaneous
edits.

● Open the sudoers File with

$ sudo visudo

● Adding a User to the sudo Group:

The sudo group is a common way to grant users administrative privileges.

$ sudo usermod -aG sudo username

Users in the sudo group can execute any command as root.

You can grant specific permissions to users or groups. For example, to
allow user2 to restart the apache2 service:

user2 ALL=(ALL) NOPASSWD: /bin/systemctl restart apache2

This entry allows user2 to restart apache2 without needing a password.

Sample Program: Using ‘sudo’

Scenario 1: Basic Administrative Tasks

Users need elevated privileges to update the system. Granting user2
permission to update the system:

user2 ALL=(ALL) NOPASSWD: /usr/bin/apt update, /usr/bin/apt upgrade

Now, user2 can run:

$ sudo apt update

$ sudo apt upgrade

To allow user2 to start and stop the apache2 service:

user2 ALL=(ALL) NOPASSWD: /bin/systemctl start apache2,
/bin/systemctl stop apache2

$ sudo systemctl start apache2

$ sudo systemctl stop apache2

Scenario 2: User Management

To allow user2 to add new users:

user2 ALL=(ALL) NOPASSWD: /usr/sbin/useradd

$ sudo useradd newuser

To allow user2 to change passwords for other users:

user2 ALL=(ALL) NOPASSWD: /usr/bin/passwd

$ sudo passwd otheruser

Scenario 3: File and Directory Management

To allow user2 to edit the /etc/apache2/apache2.conf file:

user2 ALL=(ALL) NOPASSWD: /usr/bin/nano /etc/apache2/apache2.conf

$ sudo nano /etc/apache2/apache2.conf

To allow user2 to manage files in

user2 ALL=(ALL) NOPASSWD: /bin/chown, /bin/chmod, /bin/rm,
/bin/mv, /bin/cp, /bin/mkdir

$ sudo chown user2:developers /projects/AlphaProject/*

$ sudo chmod 755 /projects/AlphaProject/newfile

$ sudo rm /projects/AlphaProject/oldfile

$ sudo mv /projects/AlphaProject/file1 /projects/AlphaProject/dir/

$ sudo cp /projects/AlphaProject/file2 /projects/AlphaProject/backup/

$ sudo mkdir /projects/AlphaProject/newdir

Scenario 4: Network Management

To allow user2 to manage network interfaces:

user2 ALL=(ALL) NOPASSWD: /sbin/ifconfig, /sbin/ip

$ sudo ifconfig eth0 up

$ sudo ip addr add 192.168.1.10/24 dev eth0

To allow user2 to manage

user2 ALL=(ALL) NOPASSWD: /sbin/iptables

$ sudo iptables -L

$ sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT

Scenario 5: System Monitoring

To allow user2 to view system logs:

user2 ALL=(ALL) NOPASSWD: /usr/bin/tail -f /var/log/syslog,
/usr/bin/tail -f /var/log/auth.log

$ sudo tail -f /var/log/syslog

$ sudo tail -f /var/log/auth.log

To allow user2 to use performance monitoring tools:

user2 ALL=(ALL) NOPASSWD: /usr/bin/top, /usr/bin/htop, /usr/bin/iostat

$ sudo top

$ sudo htop

$ sudo iostat

Scenario 6: Limiting Command Execution

To restrict user2 to only restart

Cmnd_Alias APACHE_RESTART = /bin/systemctl restart apache2

user2 ALL=(ALL) NOPASSWD: APACHE_RESTART

$ sudo systemctl restart apache2

To allow user2 to run commands only on a specific host:

user2 myhostname=(ALL) NOPASSWD: /usr/bin/passwd

$ sudo passwd user3

Scenario 7: Using Aliases

To simplify the sudoers file, define command aliases:

Cmnd_Alias NETWORK_CMDS = /sbin/ifconfig, /sbin/ip

Cmnd_Alias SYSTEM_CMDS = /usr/bin/apt update, /usr/bin/apt upgrade

user2 ALL=(ALL) NOPASSWD: NETWORK_CMDS, SYSTEM_CMDS

$ sudo ifconfig eth0 up

$ sudo apt update

To group users with similar permissions:

User_Alias ADMINS = user2, user3

ADMINS ALL=(ALL) NOPASSWD: ALL

$ sudo systemctl restart apache2

Scenario 8: Including External Files

To include configuration from external files:

In /etc/sudoers

@includedir /etc/sudoers.d

Create a file in /etc/sudoers.d for

$ sudo nano /etc/sudoers.d/user2

Add the permissions:

user2 ALL=(ALL) NOPASSWD: /bin/systemctl restart apache2

Gaining expertise with sudo configuration and usage allows you to swiftly
and safely delegate administrative tasks to users, giving them the rights
they need to accomplish their jobs while keeping the system secure and
monitoring their activity.

Password Policies and Management

Users are more likely to generate secure, unique passwords if strict
password regulations are in place. In this section, we'll learn methods to
safeguard user passwords, determine AlphaProject's password regulations,
and put them into action.

Establishing Password Policies

To enforce password policies, we will use the pam_pwquality module,
which is part of the Pluggable Authentication Modules (PAM) framework.
This module allows you to set requirements for password strength and
complexity.

Step 1: Install ‘pam_pwquality’

First, ensure that the pam_pwquality package is installed:

$ sudo apt install libpam-pwquality

Step 2: Configure ‘pam_pwquality’

● Edit the PAM configuration file for password management:

$ sudo nano /etc/pam.d/common-password

● Add or modify the following line to include

password requisite pam_pwquality.so retry=3 minlen=12 dcredit=-1
ucredit=-1 ocredit=-1 lcredit=-1

● Allows three attempts to enter a valid password.

● Sets the minimum password length to 12 characters.

● Requires at least one digit.

● Requires at least one uppercase letter.

● Requires at least one special character.

● Requires at least one lowercase letter.

Step 3: Enforcing Password Expiration

● To enforce password expiration policies, edit the /etc/login.defs file:

$ sudo nano /etc/login.defs

● Add or modify the following lines:

PASS_MAX_DAYS 90

PASS_MIN_DAYS 7

PASS_WARN_AGE 14

● Maximum number of days a password is valid (90 days).

● Minimum number of days between password changes (7 days).

● Number of days before password expiration to warn users (14
days).

Step 4: Applying Password Policies to Existing Users

Use the chage command to apply policies to existing users:

$ sudo chage -M 90 -m 7 -W 14 user1

$ sudo chage -M 90 -m 7 -W 14 user2

Securing Passwords

Step 1: Use Strong Hashing Algorithms

Ensure that passwords are hashed using strong algorithms. Edit the
/etc/login.defs file to specify the hashing algorithm:

ENCRYPT_METHOD SHA512

Step 2: Restrict Access to Password Files

Verify that the /etc/shadow file, which stores hashed passwords, has the
correct permissions:

$ ls -l /etc/shadow

The output should show that only the root user has read and write access:

-rw-r----- 1 root shadow 1523 May 20 10:00 /etc/shadow

Step 3: Use ‘chpasswd’ for Batch Password Updates

If you need to update passwords in bulk, use the chpasswd command,
which reads a list of username-password pairs from a file:

● Create a File with Username-Password Pairs:

$ sudo nano /tmp/users.txt

● Add the following content:

user1:newpassword1

user2:newpassword2

● Update Passwords:

$ sudo chpasswd < /tmp/users.txt

Step 4: Enforce Password History

To prevent users from reusing old passwords, configure the pam_unix
module. Edit the PAM configuration file for password management:

$ sudo nano /etc/pam.d/common-password

Add or modify the following line to include

password [success=1 default=ignore] pam_unix.so obscure use_authtok
try_first_pass yescrypt remember=5

This configuration ensures that the last five passwords cannot be reused.

Sample Program: Enforcing Password Policy and Management

Scenario 1: Enforcing Password Complexity

Install and Configure

$ sudo apt install libpam-pwquality

$ sudo nano /etc/pam.d/common-password

Add the line:

password requisite pam_pwquality.so retry=3 minlen=12 dcredit=-1
ucredit=-1 ocredit=-1 lcredit=-1

Attempt to change a password with insufficient complexity:

$ sudo passwd user1

Enter a weak password and observe the rejection, then enter a strong
password to meet the criteria.

Scenario 2: Implementing Password Expiration Policies

Configure Expiration Policies:

$ sudo nano /etc/login.defs

Add or modify the lines:

PASS_MAX_DAYS 90

PASS_MIN_DAYS 7

PASS_WARN_AGE 14

Apply Policies to Existing Users:

$ sudo chage -M 90 -m 7 -W 14 user1

Scenario 3: Ensuring Secure Password Storage

Verify Password File Permissions:

$ ls -l /etc/shadow

Ensure the output shows:

-rw-r----- 1 root shadow 1523 May 20 10:00 /etc/shadow

Set Strong Hashing Algorithm:

$ sudo nano /etc/login.defs

Add or modify the line:

ENCRYPT_METHOD SHA512

Scenario 4: Batch Updating Passwords

Create a File with Username-Password Pairs:

$ sudo nano /tmp/users.txt

Add the following content:

user1:newpassword1

user2:newpassword2

Update Passwords:

$ sudo chpasswd < /tmp/users.txt

Scenario 5: Preventing Password Reuse

Configure pam_unix for Password History:

$ sudo nano /etc/pam.d/common-password

Add or modify the line:

password [success=1 default=ignore] pam_unix.so obscure use_authtok
try_first_pass yescrypt remember=5

This method improves system security by lowering the likelihood of
unwanted access and making sure passwords are strong, unique, and
protected.

Working with PAM (Pluggable Authentication Modules)

PAM Overview

Pluggable Authentication Modules (PAM) provide a flexible mechanism
for authenticating users in Linux. PAM is a suite of shared libraries that
enable the local system administrator to choose how applications
authenticate users. PAM modules can be stacked to create comprehensive
authentication policies.

The primary purpose of PAM is to provide a common authentication
framework for Linux applications. It allows administrators to:

1. a consistent authentication mechanism across multiple applications.

2. configure and change authentication methods without modifying
application code.

Implement various security policies, such as account lockout, password
policies, and multi-factor authentication.

Setting up PAM

PAM configuration files are located in Each file corresponds to a specific
application or service. The configuration files consist of directives that
include module-type, control-flag, module-path, and module-arguments.

Sample of PAM Configuration File Structure:

module-type control-flag module-path module-arguments

In the above config file,

Module-Type: Defines the type of PAM function (e.g.,

Control-Flag: Determines the action on module success or failure

3. Path to the PAM module (e.g.,

4. Arguments passed to the PAM module (e.g.,

Sample Program: PAM Configuration

Example 1: Basic Authentication with pam_unix

The pam_unix module handles traditional UNIX authentication, which
includes verifying passwords against /etc/passwd and

Edit the /etc/pam.d/login file:

$ sudo nano /etc/pam.d/login

Add or ensure the following lines are present:

auth required pam_env.so

auth required pam_unix.so

account required pam_unix.so

password required pam_unix.so

session required pam_unix.so

In the above example,

1. required Initializes the environment variables.

2. required Uses UNIX authentication to verify the user's password.

3. required Checks the validity of the account.

4. required Handles password changes.

5. required Manages session settings.

Example 2: Enabling MFA with ‘pam_google_authenticator’

Multi-factor authentication(MFA) adds an extra layer of security by
requiring a second form of authentication.

● Install Google Authenticator:

$ sudo apt install libpam-google-authenticator

● Configure PAM for SSH:

Edit the /etc/pam.d/sshd file:

$ sudo nano /etc/pam.d/sshd

Add the following line:

auth required pam_google_authenticator.so

● Configure SSHD:

Edit the /etc/ssh/sshd_config file:

$ sudo nano /etc/ssh/sshd_config

Ensure the following lines are present:

ChallengeResponseAuthentication yes

● Restart SSH Service:

$ sudo systemctl restart sshd

● Setup Google Authenticator for a User:

Log in as the user and run:

$ google-authenticator

Follow the prompts to configure the Google Authenticator.

Example 3: Restricting Login Times with ‘pam_time’

The pam_time module allows you to restrict user logins based on time and
day.

● Configure pam_time in Login:

Edit the /etc/pam.d/login file:

$ sudo nano /etc/pam.d/login

Add the following line:

account required pam_time.so

● Configure Time Restrictions:

Edit the /etc/security/time.conf file:

$ sudo nano /etc/security/time.conf

Add the following rule to restrict user1 to log in only during weekdays
from 9 AM to 5 PM:

login; *; user1; MoTuWeThFr0900-1700

Example 4: Enforcing Password Complexity with ‘pam_pwquality’

Configure

Edit the /etc/pam.d/common-password file:

$ sudo nano /etc/pam.d/common-password

Add or modify the following line:

password requisite pam_pwquality.so retry=3 minlen=12 dcredit=-1
ucredit=-1 ocredit=-1 lcredit=-1

Sample Program: Managing PAM for AlphaProject

To manage PAM effectively for AlphaProject, you need to implement and
customize PAM configurations for various scenarios.

Scenario 1: Protecting SSH Access

● Configure SSH Authentication:

Edit the /etc/pam.d/sshd file:

$ sudo nano /etc/pam.d/sshd

Add the following lines to enable multi-factor authentication and enforce
password complexity:

auth required pam_google_authenticator.so

auth required pam_pwquality.so retry=3 minlen=12 dcredit=-1 ucredit=-1
ocredit=-1 lcredit=-1

● Configure SSHD:

Edit the /etc/ssh/sshd_config file:

$ sudo nano /etc/ssh/sshd_config

Ensure these settings:

ChallengeResponseAuthentication yes

PasswordAuthentication yes

● Restart SSH Service:

$ sudo systemctl restart sshd

Scenario 2: Restricting Login Times for Developers

● Configure Login Time Restrictions:

Edit the /etc/pam.d/login file:

$ sudo nano /etc/pam.d/login

Add:

account required pam_time.so

● Set Time Restrictions:

Edit the /etc/security/time.conf file:

$ sudo nano /etc/security/time.conf

Add rules to restrict developer logins to working hours:

login; *; user2; MoTuWeThFr0900-1700

login; *; user3; MoTuWeThFr0900-1700

Scenario 3: Enforcing Account Lockout After Failed Attempts

The pam_tally2 module can lock user accounts after a number of failed
login attempts.

● Install

$ sudo apt install libpam-modules

● Configure Account Lockout:

Edit the /etc/pam.d/common-auth file:

$ sudo nano /etc/pam.d/common-auth

Add the following lines:

auth required pam_tally2.so deny=5 onerr=fail unlock_time=600

account required pam_tally2.so

In the above snippet,

○ Locks account after 5 failed attempts.

○ Automatically unlocks account after 10 minutes.

● View Failed Attempts:

To check the number of failed login attempts for a user:

$ sudo pam_tally2 --user user1

● Reset Failed Attempt Counter:

To reset the counter for a user:

$ sudo pam_tally2 --user user1 --reset

These PAM setups will help you handle the authentication processes of
AlphaProject and improve its security. By taking this route, you may rest
assured that your project's authentication system will be adaptable, safe,
and strong.

Managing Group Memberships

Overview

Group memberships in Linux are an essential part of managing user
permissions and access control. Groups allow you to assign a set of
permissions to multiple users, simplifying the administration of file
permissions, application access, and more.

Group memberships are defined and stored in the /etc/group file. This file
contains information about all groups and their members in a Linux
system.

Each line in the /etc/group file represents a group and has the following
format:

group_name:x:GID:user1,user2,user3

where,

● The name of the group.

● Placeholder for the password field (usually not used).

● The Group ID number.

● A comma-separated list of users who are members of the group.

Managing Group Memberships

Managing group memberships involves creating groups, adding users to
groups, removing users from groups, and modifying group properties.

Creating Groups

Groups can be created using the groupadd command.

Create a New Group:

$ sudo groupadd developers

This command creates a new group named

Adding Users to Groups

Users can be added to groups using the usermod command or directly
editing the /etc/group file.

Add a User to a Group:

$ sudo usermod -aG developers user1

This command adds user1 to the developers group without removing them
from other groups.

Removing Users from Groups

Users can be removed from groups using the gpasswd command or by
editing the /etc/group file.

Remove a User from a Group:

$ sudo gpasswd -d user1 developers

This command removes user1 from the developers group.

Modifying Group Properties

Group properties, such as the group name and GID, can be modified using
the groupmod command.

● Change the Group Name:

$ sudo groupmod -n devteam developers

This command changes the name of the developers group to

● Change the Group ID:

$ sudo groupmod -g 1001 devteam

This command changes the GID of the devteam group to

Sample Program: Managing Group Memberships in AlphaProject

Scenario 1: Setting up Initial Group Memberships

For AlphaProject, we need to create a group for developers and assign
users to this group.

● Create the developers Group:

$ sudo groupadd developers

● Add Users to the developers Group:

$ sudo usermod -aG developers user1

$ sudo usermod -aG developers user2

$ sudo usermod -aG developers user3

Scenario 2: Managing Access for a New Team Member

When a new developer, joins the project, they need to be added to the
developers group.

Add user4 to the developers Group:

$ sudo usermod -aG developers user4

Scenario 3: Removing a Developer from the Project

If a developer, leaves the project, they need to be removed from the
developers group.

Remove user2 from the developers Group:

$ sudo gpasswd -d user2 developers

Scenario 4: Creating and Managing Additional Groups

Suppose we need a separate group for administrators who have elevated
privileges.

● Create the admins Group:

$ sudo groupadd admins

● Add Users to the admins Group:

$ sudo usermod -aG admins user1

$ sudo usermod -aG admins user3

● Verify Group Memberships:

Use the groups command to check the groups a user belongs to:

$ groups user1

$ groups user3

Scenario 5: Modifying Group Information

If we decide to rename the developers group to devteam for better clarity:

● Rename the developers Group:

$ sudo groupmod -n devteam developers

● Verify the Change:

Check the /etc/group file to ensure the group name has been updated:

$ grep 'devteam' /etc/group

Scenario 6: Setting Group Ownership on Directories

To ensure that all files created in the /projects/AlphaProject directory
belong to the developers group:

● Change the Group Ownership:

$ sudo chown -R :developers /projects/AlphaProject

● Set the SGID Bit:

This ensures that new files and subdirectories inherit the group ownership
of the parent directory:

$ sudo chmod g+s /projects/AlphaProject

● Verify the Permissions:

List the directory to verify the SGID bit:

$ ls -ld /projects/AlphaProject

Scenario 7: Managing Group Memberships Directly in /etc/group

While command-line tools are the recommended way to manage group
memberships, you can also directly edit the /etc/group file for quick
changes.

● Edit the /etc/group File:

$ sudo nano /etc/group

● Add or modify the line for the developers group:

developers:x:1001:user1,user3,user4

● Use the getent command to verify the group information:

$ getent group developers

You can manage who has access to what in AlphaProject and make sure
everyone has the rights they need by keeping track of group memberships.
In addition to improving the safety and structure of your project
environment, this method streamlines the process of managing user rights.

Summary

The concluding chapter of this book explored the administration of users
and permissions in Linux. The first part of the chapter covered managing
user accounts, which included making use of commands like useradd and
usermod to create different kinds of user accounts. Some of the methods
tested for profile modification included altering user shells, home
directories, and group memberships. To offer finer-grained permissions
than the conventional user-group-other approach, Access Control Lists
(ACLs) were implemented. ACLs were configured, viewed, and modified
for particular users and scenarios through the use of particular instances.

Another significant topic was managing user sessions, which involved
using commands such as who, w, and last to identify and track user
sessions. We went over how to use kill, pkill, and skill to pause, resume,
and end user sessions. We covered why sudo configuration is essential for
admin activities, and we looked at how to set up sudo policies in the
/etc/sudoers file and how to grant users certain access.

To handle password rules and administration, we used pam pwquality to
set complexity criteria, enforce password expiration standards, and secure
password storage. Also learned were methods for avoiding password reuse
and upgrading passwords in bulk.

This chapter also provided a comprehensive overview of Pluggable
Authentication Modules (PAM), outlining its function and showing how to

configure various authentication methods. Users were given the option to
configure several security features, such as pam_google_authenticator for
multi-factor authentication, pam_time for time restrictions on logins, and
pam_tally2 for account lockout.

Last but not least, we looked at group membership management, including
the storage location of group memberships and the commands groupadd,
usermod, gpasswd, and groupmod for creating, editing, and deleting
groups.

Thank You

Epilogue

As you near the end of "Linux Basics for SysAdmin," you've made
tremendous progress in understanding the fundamental skills required for
effective Linux system management. This book has given you a thorough
grasp of the Linux operating system, its command line interface, and the
many tools and commands required to administer business systems on an
essential level.

From exploring the Linux filesystem and using basic commands to
managing users, permissions, and processes, you've laid a solid basis for
any system administrator. You've learned how to install and manage
software and hardware, configure services, measure system performance,
and maintain system security through proper user and permission
management. Each chapter has provided you with practical skills that you
can use in everyday situations, increasing your confidence in managing
and troubleshooting Linux systems.

The learning doesn't end here. The abilities and knowledge you've learned
serve as a starting point for more advanced expertise. To become a truly
skilled and diverse system administrator, you must constantly increase
your skill set and knowledge base. For individuals who want to go deeper
into the complexities of Linux system administration, we are glad to
introduce the accompanying book, "Linux Advanced for SysAdmin."

"Linux Advanced for SysAdmin" advances your knowledge by focusing
on advanced topics including security configuration, network
management, and large-scale system monitoring. You'll learn how to

manage databases, do advanced system monitoring, and handle complex
tasks like Kubernetes, load balancing, and deployments. This advanced
guide is intended to supplement the fundamental information you have
received in this book, giving you with the expertise required to tackle
complex and challenging jobs in Linux system administration.

By reading both "Linux Basics for SysAdmin" and "Linux Advanced for
SysAdmin," you will be well-prepared to manage a variety of
administrative jobs, making you a great asset to any IT team. Together,
these publications provide a thorough guide to becoming a skilled,
effective, and adaptable Linux system administrator. There are limitless
opportunities waiting for you in the IT field if you accept Linux, keep
learning, and maintain a curious mind.

Acknowledgement

I owe a tremendous debt of gratitude to GitforGits, for their unflagging
enthusiasm and wise counsel throughout the entire process of writing this
book. Their knowledge and careful editing helped make sure the piece was
useful for people of all reading levels and comprehension skills. In
addition, I'd like to thank everyone involved in the publishing process for
their efforts in making this book a reality. Their efforts, from copyediting
to advertising, made the project what it is today.

Finally, I'd like to express my gratitude to everyone who has shown me
unconditional love and encouragement throughout my life. Their support
was crucial to the completion of this book. I appreciate your help with this
endeavour and your continued interest in my career.

	Start

